

    
      
          
            
  
Welcome to idly’ documentation!

idly [http://idly.readthedocs.io]  a collection of interpretable algorithms realized via DNN architectures

If you’re new to idly, we invite you to take a
look at the Getting Started guide, where you’ll find a series of
tutorials illustrating all you can do with  idly. You can also check out the FAQ for many
use-case example.

Any kind of feedback/criticism would be greatly appreciated (software design,
documentation, improvement ideas, spelling mistakes, etc…). Please feel free
to contribute and send pull requests (see GitHub page [https://github.com/dhavala/idly])!











          

      

      

    

  

    
      
          
            
  
Getting Started


Basic usage


Automatic cross-validation

Surprise [https://nicolashug.github.io/Surprise/] has a set of built-in
algorithms and datasets for you
to play with. In its simplest form, it only takes a few lines of code to
run a cross-validation procedure:


From file examples/basic_usage.py

from surprise import SVD
from surprise import Dataset
from surprise.model_selection import cross_validate


# Load the movielens-100k dataset (download it if needed),
data = Dataset.load_builtin('ml-100k')

# We'll use the famous SVD algorithm.
algo = SVD()

# Run 5-fold cross-validation and print results
cross_validate(algo, data, measures=['RMSE', 'MAE'], cv=5, verbose=True)







The result should be as follows (actual values may vary due to randomization):

Evaluating RMSE, MAE of algorithm SVD on 5 split(s).

            Fold 1  Fold 2  Fold 3  Fold 4  Fold 5  Mean    Std
RMSE        0.9311  0.9370  0.9320  0.9317  0.9391  0.9342  0.0032
MAE         0.7350  0.7375  0.7341  0.7342  0.7375  0.7357  0.0015
Fit time    6.53    7.11    7.23    7.15    3.99    6.40    1.23
Test time   0.26    0.26    0.25    0.15    0.13    0.21    0.06





The load_builtin() method will
offer to download the movielens-100k dataset [http://grouplens.org/datasets/movielens/] if it has not already been
downloaded, and it will save it in the .idly_data folder in your home
directory (you can also choose to save it somewhere else).

We are here using the well-known
SVD
algorithm, but many other algorithms are available. See
Using prediction algorithms for more details.

The cross_validate()
function runs a cross-validation procedure according to the cv argument,
and computes some accuracy measures. We are here
using a classical 5-fold cross-validation, but fancier iterators can be used
(see here).




Train-test split and the fit() method

If you don’t want to run a full cross-validation procedure, you can use the
train_test_split()
to sample a trainset and a testset with given sizes, and use the accuracy
metric of your chosing. You’ll need to use the fit() method which will
train the algorithm on the trainset, and the test() method which will
return the predictions made from the testset:


From file examples/train_test_split.py

from surprise import SVD
from surprise import Dataset
from surprise import accuracy
from surprise.model_selection import train_test_split

# Load the movielens-100k dataset (download it if needed),
data = Dataset.load_builtin('ml-100k')

# sample random trainset and testset
# test set is made of 25% of the ratings.
trainset, testset = train_test_split(data, test_size=.25)

# We'll use the famous SVD algorithm.
algo = SVD()

# Train the algorithm on the trainset, and predict ratings for the testset
algo.fit(trainset)
predictions = algo.test(testset)

# Then compute RMSE
accuracy.rmse(predictions)







Result:

RMSE: 0.9411





Note that you can train and test an algorithm with the following one-line:

predictions = algo.fit(trainset).test(testset)





In some cases, your trainset and testset are already defined by some files.
Please refer to this section to handle such cases.




Train on a whole trainset and the predict() method

Obviously, we could also simply fit our algorithm to the whole dataset, rather
than running cross-validation. This can be done by using the
build_full_trainset() method which will
build a trainset object:


From file examples/predict_ratings.py

from surprise import KNNBasic
from surprise import Dataset

# Load the movielens-100k dataset
data = Dataset.load_builtin('ml-100k')

# Retrieve the trainset.
trainset = data.build_full_trainset()

# Build an algorithm, and train it.
algo = KNNBasic()
algo.fit(trainset)







We can now predict ratings by directly calling the predict() method.  Let’s say
you’re interested in user 196 and item 302 (make sure they’re in the
trainset!), and you know that the true rating \(r_{ui} = 4\):


From file examples/predict_ratings.py

uid = str(196)  # raw user id (as in the ratings file). They are **strings**!
iid = str(302)  # raw item id (as in the ratings file). They are **strings**!

# get a prediction for specific users and items.
pred = algo.predict(uid, iid, r_ui=4, verbose=True)







The result should be:

user: 196        item: 302        r_ui = 4.00   est = 4.06   {'actual_k': 40, 'was_impossible': False}






Note

The predict() uses raw
ids (please read this about raw and inner ids). As
the dataset we have used has been read from a file, the raw ids are strings
(even if they represent numbers).



We have so far used a built-in dataset, but you can of course use your own.
This is explained in the next section.






Use a custom dataset

Surprise [https://nicolashug.github.io/Surprise/] has a set of  builtin
datasets, but you can of course use a custom dataset.
Loading a rating dataset can be done either from a file (e.g. a csv file), or
from a pandas dataframe.  Either way, you will need to define a Reader object for idly [https://idly.readthedocs.io] to be able to parse the file or the
dataframe.


	To load a dataset from a file (e.g. a csv file), you will need the
load_from_file() method:


From file examples/load_custom_dataset.py

from surprise import BaselineOnly
from surprise import Dataset
from surprise import Reader
from surprise.model_selection import cross_validate

# path to dataset file
file_path = os.path.expanduser('~/.surprise_data/ml-100k/ml-100k/u.data')

# As we're loading a custom dataset, we need to define a reader. In the
# movielens-100k dataset, each line has the following format:
# 'user item rating timestamp', separated by '\t' characters.
reader = Reader(line_format='user item rating timestamp', sep='\t')

data = Dataset.load_from_file(file_path, reader=reader)

# We can now use this dataset as we please, e.g. calling cross_validate
cross_validate(BaselineOnly(), data, verbose=True)







For more details about readers and how to use them, see the Reader
class documentation.


Note

As you already know from the previous section, the Movielens-100k dataset
is built-in so a much quicker way to load the dataset is to do data =
Dataset.load_builtin('ml-100k'). We will of course ignore this here.








	To load a dataset from a pandas dataframe, you will need the
load_from_df() method. You
will also need a Reader object, but only
the rating_scale parameter must be specified. The dataframe must have
three columns, corresponding to the user (raw) ids, the item (raw) ids, and
the ratings in this order. Each row thus corresponds to a given rating. This
is not restrictive as you can reorder the columns of your dataframe easily.


From file examples/load_from_dataframe.py

import pandas as pd

from surprise import NormalPredictor
from surprise import Dataset
from surprise import Reader
from surprise.model_selection import cross_validate


# Creation of the dataframe. Column names are irrelevant.
ratings_dict = {'itemID': [1, 1, 1, 2, 2],
                'userID': [9, 32, 2, 45, 'user_foo'],
                'rating': [3, 2, 4, 3, 1]}
df = pd.DataFrame(ratings_dict)

# A reader is still needed but only the rating_scale param is requiered.
reader = Reader(rating_scale=(1, 5))

# The columns must correspond to user id, item id and ratings (in that order).
data = Dataset.load_from_df(df[['userID', 'itemID', 'rating']], reader)

# We can now use this dataset as we please, e.g. calling cross_validate
cross_validate(NormalPredictor(), data, cv=2)







The dataframe initially looks like this:

      itemID  rating    userID
0       1       3         9
1       1       2        32
2       1       4         2
3       2       3        45
4       2       1  user_foo












Use cross-validation iterators

For cross-validation, we can use the cross_validate() function that does all
the hard work for us. But for a better control, we can also instanciate a
cross-validation iterator, and make predictions over each split using the
split() method of the iterator, and the
test() method
of the algorithm. Here is an example where we use a classical K-fold
cross-validation procedure with 3 splits:


From file examples/use_cross_validation_iterators.py

from surprise import SVD
from surprise import Dataset
from surprise import accuracy
from surprise.model_selection import KFold

# Load the movielens-100k dataset
data = Dataset.load_builtin('ml-100k')

# define a cross-validation iterator
kf = KFold(n_splits=3)

algo = SVD()

for trainset, testset in kf.split(data):

    # train and test algorithm.
    algo.fit(trainset)
    predictions = algo.test(testset)

    # Compute and print Root Mean Squared Error
    accuracy.rmse(predictions, verbose=True)







Result could be, e.g.:

RMSE: 0.9374
RMSE: 0.9476
RMSE: 0.9478





Other cross-validation iterator can be used, like LeaveOneOut or ShuffleSplit.
See all the available iterators here.
The design of idly’s cross-validation tools is heavily inspired from the
excellent scikit-learn API.



A special case of cross-validation is when the folds are already predefined by
some files. For instance, the movielens-100K dataset already provides 5 train
and test files (u1.base, u1.test … u5.base, u5.test). idly can handle
this case by using a idly.model_selection.split.PredefinedKFold
object:


From file examples/load_custom_dataset_predefined_folds.py

from surprise import SVD
from surprise import Dataset
from surprise import Reader
from surprise import accuracy
from surprise.model_selection import PredefinedKFold

# path to dataset folder
files_dir = os.path.expanduser('~/.surprise_data/ml-100k/ml-100k/')

# This time, we'll use the built-in reader.
reader = Reader('ml-100k')

# folds_files is a list of tuples containing file paths:
# [(u1.base, u1.test), (u2.base, u2.test), ... (u5.base, u5.test)]
train_file = files_dir + 'u%d.base'
test_file = files_dir + 'u%d.test'
folds_files = [(train_file % i, test_file % i) for i in (1, 2, 3, 4, 5)]

data = Dataset.load_from_folds(folds_files, reader=reader)
pkf = PredefinedKFold()

algo = SVD()

for trainset, testset in pkf.split(data):

    # train and test algorithm.
    algo.fit(trainset)
    predictions = algo.test(testset)

    # Compute and print Root Mean Squared Error
    accuracy.rmse(predictions, verbose=True)







Of course, nothing prevents you from only loading a single file for training
and a single file for testing. However, the folds_files parameter still
needs to be a list.




Tune algorithm parameters with GridSearchCV

The cross_validate() function reports accuracy
metric over a cross-validation procedure for a given set of parameters.  If you
want to know which parameter combination yields the best results, the
GridSearchCV class
comes to the rescue.  Given a dict of parameters, this class exhaustively
tries all the combinations of parameters and reports the best parameters for any
accuracy measure (averaged over the different splits). It is heavily inspired
from scikit-learn’s GridSearchCV [http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html].

Here is an example where we try different values for parameters n_epochs,
lr_all and reg_all of the SVD algorithm.


From file examples/grid_search_usage.py

from surprise import SVD
from surprise import Dataset
from surprise.model_selection import GridSearchCV

# Use movielens-100K
data = Dataset.load_builtin('ml-100k')

param_grid = {'n_epochs': [5, 10], 'lr_all': [0.002, 0.005],
              'reg_all': [0.4, 0.6]}
gs = GridSearchCV(SVD, param_grid, measures=['rmse', 'mae'], cv=3)

gs.fit(data)

# best RMSE score
print(gs.best_score['rmse'])

# combination of parameters that gave the best RMSE score
print(gs.best_params['rmse'])







Result:

0.961300130118
{'n_epochs': 10, 'lr_all': 0.005, 'reg_all': 0.4}





We are here evaluating the average RMSE and MAE over a 3-fold cross-validation
procedure, but any cross-validation iterator can used.

Once fit() has been called, the best_estimator attribute gives us an
algorithm instance with the optimal set of parameters, which can be used how we
please:


From file examples/grid_search_usage.py

# We can now use the algorithm that yields the best rmse:
algo = gs.best_estimator['rmse']
algo.fit(data.build_full_trainset())








Note

Dictionary parameters such as bsl_options and sim_options require
particular treatment. See usage example below:

param_grid = {'k': [10, 20],
              'sim_options': {'name': ['msd', 'cosine'],
                              'min_support': [1, 5],
                              'user_based': [False]}
              }





Naturally, both can be combined, for example for the
KNNBaseline
algorithm:

param_grid = {'bsl_options': {'method': ['als', 'sgd'],
                              'reg': [1, 2]},
              'k': [2, 3],
              'sim_options': {'name': ['msd', 'cosine'],
                              'min_support': [1, 5],
                              'user_based': [False]}
              }







For further analysis, the cv_results attribute has all the needed
information and can be imported in a pandas dataframe:


From file examples/grid_search_usage.py

results_df = pd.DataFrame.from_dict(gs.cv_results)







In our example, the cv_results attribute looks like this (floats are
formatted):

'split0_test_rmse': [1.0, 1.0, 0.97, 0.98, 0.98, 0.99, 0.96, 0.97]
'split1_test_rmse': [1.0, 1.0, 0.97, 0.98, 0.98, 0.99, 0.96, 0.97]
'split2_test_rmse': [1.0, 1.0, 0.97, 0.98, 0.98, 0.99, 0.96, 0.97]
'mean_test_rmse':   [1.0, 1.0, 0.97, 0.98, 0.98, 0.99, 0.96, 0.97]
'std_test_rmse':    [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
'rank_test_rmse':   [7 8 3 5 4 6 1 2]
'split0_test_mae':  [0.81, 0.82, 0.78, 0.79, 0.79, 0.8, 0.77, 0.79]
'split1_test_mae':  [0.8, 0.81, 0.78, 0.79, 0.78, 0.79, 0.77, 0.78]
'split2_test_mae':  [0.81, 0.81, 0.78, 0.79, 0.78, 0.8, 0.77, 0.78]
'mean_test_mae':    [0.81, 0.81, 0.78, 0.79, 0.79, 0.8, 0.77, 0.78]
'std_test_mae':     [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
'rank_test_mae':    [7 8 2 5 4 6 1 3]
'mean_fit_time':    [1.53, 1.52, 1.53, 1.53, 3.04, 3.05, 3.06, 3.02]
'std_fit_time':     [0.03, 0.04, 0.0, 0.01, 0.04, 0.01, 0.06, 0.01]
'mean_test_time':   [0.46, 0.45, 0.44, 0.44, 0.47, 0.49, 0.46, 0.34]
'std_test_time':    [0.0, 0.01, 0.01, 0.0, 0.03, 0.06, 0.01, 0.08]
'params':           [{'n_epochs': 5, 'lr_all': 0.002, 'reg_all': 0.4}, {'n_epochs': 5, 'lr_all': 0.002, 'reg_all': 0.6}, {'n_epochs': 5, 'lr_all': 0.005, 'reg_all': 0.4}, {'n_epochs': 5, 'lr_all': 0.005, 'reg_all': 0.6}, {'n_epochs': 10, 'lr_all': 0.002, 'reg_all': 0.4}, {'n_epochs': 10, 'lr_all': 0.002, 'reg_all': 0.6}, {'n_epochs': 10, 'lr_all': 0.005, 'reg_all': 0.4}, {'n_epochs': 10, 'lr_all': 0.005, 'reg_all': 0.6}]
'param_n_epochs':   [5, 5, 5, 5, 10, 10, 10, 10]
'param_lr_all':     [0.0, 0.0, 0.01, 0.01, 0.0, 0.0, 0.01, 0.01]
'param_reg_all':    [0.4, 0.6, 0.4, 0.6, 0.4, 0.6, 0.4, 0.6]





As you can see, each list has the same size of the number of parameter
combination. It corresponds to the following table:

























	split0_test_rmse

	split1_test_rmse

	split2_test_rmse

	mean_test_rmse

	std_test_rmse

	rank_test_rmse

	split0_test_mae

	split1_test_mae

	split2_test_mae

	mean_test_mae

	std_test_mae

	rank_test_mae

	mean_fit_time

	std_fit_time

	mean_test_time

	std_test_time

	params

	param_n_epochs

	param_lr_all

	param_reg_all





	0.99775

	0.997744

	0.996378

	0.997291

	0.000645508

	7

	0.807862

	0.804626

	0.805282

	0.805923

	0.00139657

	7

	1.53341

	0.0305216

	0.455831

	0.000922113

	{‘n_epochs’: 5, ‘lr_all’: 0.002, ‘reg_all’: 0.4}

	5

	0.002

	0.4



	1.00381

	1.00304

	1.00257

	1.00314

	0.000508358

	8

	0.816559

	0.812905

	0.813772

	0.814412

	0.00155866

	8

	1.5199

	0.0367117

	0.451068

	0.00938646

	{‘n_epochs’: 5, ‘lr_all’: 0.002, ‘reg_all’: 0.6}

	5

	0.002

	0.6



	0.973524

	0.973595

	0.972495

	0.973205

	0.000502609

	3

	0.783361

	0.780242

	0.78067

	0.781424

	0.00138049

	2

	1.53449

	0.00496203

	0.441558

	0.00529696

	{‘n_epochs’: 5, ‘lr_all’: 0.005, ‘reg_all’: 0.4}

	5

	0.005

	0.4



	0.98229

	0.982059

	0.981486

	0.981945

	0.000338056

	5

	0.794481

	0.790781

	0.79186

	0.792374

	0.00155377

	5

	1.52739

	0.00859185

	0.44463

	0.000888907

	{‘n_epochs’: 5, ‘lr_all’: 0.005, ‘reg_all’: 0.6}

	5

	0.005

	0.6



	0.978034

	0.978407

	0.976919

	0.977787

	0.000632049

	4

	0.787643

	0.784723

	0.784957

	0.785774

	0.00132486

	4

	3.03572

	0.0431101

	0.466606

	0.0254965

	{‘n_epochs’: 10, ‘lr_all’: 0.002, ‘reg_all’: 0.4}

	10

	0.002

	0.4



	0.986263

	0.985817

	0.985004

	0.985695

	0.000520899

	6

	0.798218

	0.794457

	0.795373

	0.796016

	0.00160135

	6

	3.0544

	0.00636185

	0.488357

	0.0576194

	{‘n_epochs’: 10, ‘lr_all’: 0.002, ‘reg_all’: 0.6}

	10

	0.002

	0.6



	0.963751

	0.963463

	0.962676

	0.963297

	0.000454661

	1

	0.774036

	0.770548

	0.771588

	0.772057

	0.00146201

	1

	3.0636

	0.0597982

	0.456484

	0.00510321

	{‘n_epochs’: 10, ‘lr_all’: 0.005, ‘reg_all’: 0.4}

	10

	0.005

	0.4



	0.973605

	0.972868

	0.972765

	0.973079

	0.000374222

	2

	0.78607

	0.781918

	0.783537

	0.783842

	0.00170855

	3

	3.01907

	0.011834

	0.338839

	0.075346

	{‘n_epochs’: 10, ‘lr_all’: 0.005, ‘reg_all’: 0.6}

	10

	0.005

	0.6









Command line usage

idly can also be used from the command line, for example:

idly -algo SVD -params "{'n_epochs': 5, 'verbose': True}" -load-builtin ml-100k -n-folds 3





See detailed usage by running:

idly -h











          

      

      

    

  

    
      
          
            
  
Using prediction algorithms

idly provides a bunch of built-in algorithms. All algorithms derive from
the AlgoBase base
class, where are implemented some key methods (e.g. predict, fit and test). The list and
details of the available prediction algorithms can be found in the
prediction_algorithms package
documentation.

Every algorithm is part of the global idly namespace, so you only need to
import their names from the idly package, for example:

from idly import KNNBasic
algo = KNNBasic()





Some of these algorithms may use baseline estimates, some may use a similarity measure. We will here review how to configure the
way baselines and similarities are computed.


Baselines estimates configuration


Note

This section only applies to algorithms (or similarity measures) that try to
minimize the following regularized squared error (or equivalent):


\[\sum_{r_{ui} \in R_{train}} \left(r_{ui} - (\mu + b_u + b_i)\right)^2 +
\lambda \left(b_u^2 + b_i^2 \right).\]

For algorithms using baselines in another objective function (e.g. the
SVD
algorithm), the baseline configuration is done differently and is specific to
each algorithm. Please refer to their own documentation.



First of all, if you do not want to configure the way baselines are computed,
you don’t have to: the default parameters will do just fine. If you do want to
well… This is for you.

You may want to read section 2.1 of [Kor10] to get a good idea of
what are baseline estimates.

Baselines can be estimated in two different ways:


	Using Stochastic Gradient Descent (SGD).


	Using Alternating Least Squares (ALS).




You can configure the way baselines are computed using the bsl_options
parameter passed at the creation of an algorithm. This parameter is a
dictionary for which the key 'method' indicates the method to use. Accepted
values are 'als' (default) and 'sgd'. Depending on its value, other
options may be set. For ALS:


	'reg_i': The regularization parameter for items. Corresponding to
\(\lambda_2\) in [Kor10].  Default is 10.


	'reg_u': The regularization parameter for users. Corresponding to
\(\lambda_3\) in [Kor10].  Default is 15.


	'n_epochs': The number of iteration of the ALS procedure. Default is
10.  Note that in [Kor10], what is described is a single
iteration ALS process.




And for SGD:


	'reg': The regularization parameter of the cost function that is
optimized, corresponding to \(\lambda_1\) and then \(\lambda_5\) in
[Kor10] Default is 0.02.


	'learning_rate': The learning rate of SGD, corresponding to
\(\gamma\) in [Kor10].  Default is 0.005.


	'n_epochs': The number of iteration of the SGD procedure. Default is 20.





Note

For both procedures (ALS and SGD), user and item biases (\(b_u\) and
\(b_i\)) are initialized to zero.



Usage examples:


From file examples/baselines_conf.py

print('Using ALS')
bsl_options = {'method': 'als',
               'n_epochs': 5,
               'reg_u': 12,
               'reg_i': 5
               }
algo = BaselineOnly(bsl_options=bsl_options)








From file examples/baselines_conf.py

print('Using SGD')
bsl_options = {'method': 'sgd',
               'learning_rate': .00005,
               }
algo = BaselineOnly(bsl_options=bsl_options)







Note that some similarity measures may use baselines, such as the
pearson_baseline similarity.
Configuration works just the same, whether the baselines are used in the actual
prediction \(\hat{r}_{ui}\) or not:


From file examples/baselines_conf.py

bsl_options = {'method': 'als',
               'n_epochs': 20,
               }
sim_options = {'name': 'pearson_baseline'}
algo = KNNBasic(bsl_options=bsl_options, sim_options=sim_options)







This leads us to similarity measure configuration, which we will review right
now.




Similarity measure configuration

Many algorithms use a similarity measure to estimate a rating. The way they can
be configured is done in a similar fashion as for baseline ratings: you just
need to pass a sim_options argument at the creation of an algorithm. This
argument is a dictionary with the following (all optional) keys:


	'name': The name of the similarity to use, as defined in the
similarities module. Default is 'MSD'.


	'user_based': Whether similarities will be computed between users or
between items. This has a huge impact on the performance of a prediction
algorithm.  Default is True.


	'min_support': The minimum number of common items (when 'user_based'
is 'True') or minimum number of common users (when 'user_based' is
'False') for the similarity not to be zero. Simply put, if
\(|I_{uv}| < \text{min_support}\) then \(\text{sim}(u, v) = 0\). The
same goes for items.


	'shrinkage': Shrinkage parameter to apply (only relevant for
pearson_baseline similarity).
Default is 100.




Usage examples:


From file examples/similarity_conf.py

sim_options = {'name': 'cosine',
               'user_based': False  # compute  similarities between items
               }
algo = KNNBasic(sim_options=sim_options)








From file examples/similarity_conf.py

sim_options = {'name': 'pearson_baseline',
               'shrinkage': 0  # no shrinkage
               }
algo = KNNBasic(sim_options=sim_options)








See also

The similarities module.









          

      

      

    

  

    
      
          
            
  
How to build your own prediction algorithm

This page describes how to build a custom prediction algorithm using idly.


The basics

Want to get your hands dirty? Cool.

Creating your own prediction algorithm is pretty simple: an algorithm is
nothing but a class derived from AlgoBase that has an estimate
method.  This is the method that is called by the predict() method. It takes
in an inner user id, an inner item id (see this note), and returns the estimated rating \(\hat{r}_{ui}\):


From file examples/building_custom_algorithms/most_basic_algorithm.py

from surprise import AlgoBase
from surprise import Dataset
from surprise.model_selection import cross_validate


class MyOwnAlgorithm(AlgoBase):

    def __init__(self):

        # Always call base method before doing anything.
        AlgoBase.__init__(self)

    def estimate(self, u, i):

        return 3


data = Dataset.load_builtin('ml-100k')
algo = MyOwnAlgorithm()

cross_validate(algo, data, verbose=True)







This algorithm is the dumbest we could have thought of: it just predicts a
rating of 3, regardless of users and items.

If you want to store additional information about the prediction, you can also
return a dictionary with given details:

def estimate(self, u, i):

    details = {'info1' : 'That was',
               'info2' : 'easy stuff :)'}
    return 3, details





This dictionary will be stored in the prediction as the details
field and can be used for later analysis.




The fit method

Now, let’s make a slightly cleverer algorithm that predicts the average of all
the ratings of the trainset. As this is a constant value that does not depend
on current user or item, we would rather compute it once and for all. This can
be done by defining the fit method:


From file examples/building_custom_algorithms/most_basic_algorithm2.py

class MyOwnAlgorithm(AlgoBase):

    def __init__(self):

        # Always call base method before doing anything.
        AlgoBase.__init__(self)

    def fit(self, trainset):

        # Here again: call base method before doing anything.
        AlgoBase.fit(self, trainset)

        # Compute the average rating. We might as well use the
        # trainset.global_mean attribute ;)
        self.the_mean = np.mean([r for (_, _, r) in
                                 self.trainset.all_ratings()])

        return self

    def estimate(self, u, i):

        return self.the_mean







The fit method is called e.g. by the cross_validate function at each fold of
a cross-validation process, (but you can also call it yourself).  Before doing anything, you should call the
base class fit() method.

Note that the fit() method returns self. This allows to use expression
like algo.fit(trainset).test(testset).




The trainset attribute

Once the base class fit() method has returned,
all the info you need about the current training set (rating values, etc…) is
stored in the self.trainset attribute. This is a Trainset object that has many attributes and methods of
interest for prediction.

To illustrate its usage, let’s make an algorithm that predicts an average
between the mean of all ratings, the mean rating of the user and the mean
rating for the item:


From file examples/building_custom_algorithms/mean_rating_user_item.py

    def estimate(self, u, i):

        sum_means = self.trainset.global_mean
        div = 1

        if self.trainset.knows_user(u):
            sum_means += np.mean([r for (_, r) in self.trainset.ur[u]])
            div += 1
        if self.trainset.knows_item(i):
            sum_means += np.mean([r for (_, r) in self.trainset.ir[i]])
            div += 1

        return sum_means / div







Note that it would have been a better idea to compute all the user means in the
fit method, thus avoiding the same computations multiple times.




When the prediction is impossible

It’s up to your algorithm to decide if it can or cannot yield a prediction. If
the prediction is impossible, then you can raise the
PredictionImpossible exception.
You’ll need to import it first:

from idly import PredictionImpossible





This exception will be caught by the predict() method, and the
estimation \(\hat{r}_{ui}\) will be set according to
the default_prediction() method,
which can be overridden. By default, it returns the average of all ratings in
the trainset.




Using similarities and baselines

Should your algorithm use a similarity measure or baseline estimates, you’ll
need to accept bsl_options and sim_options as parameters to the
__init__ method, and pass them along to the Base class. See how to use
these parameters in the Using prediction algorithms section.

Methods compute_baselines()   and
compute_similarities() can
be called in the fit method (or anywhere else).


From file examples/building_custom_algorithms/.with_baselines_or_sim.py

class MyOwnAlgorithm(AlgoBase):

    def __init__(self, sim_options={}, bsl_options={}):

        AlgoBase.__init__(self, sim_options=sim_options,
                          bsl_options=bsl_options)

    def fit(self, trainset):

        AlgoBase.fit(self, trainset)

        # Compute baselines and similarities
        self.bu, self.bi = self.compute_baselines()
        self.sim = self.compute_similarities()

        return self

    def estimate(self, u, i):

        if not (self.trainset.knows_user(u) and self.trainset.knows_item(i)):
            raise PredictionImpossible('User and/or item is unkown.')

        # Compute similarities between u and v, where v describes all other
        # users that have also rated item i.
        neighbors = [(v, self.sim[u, v]) for (v, r) in self.trainset.ir[i]]
        # Sort these neighbors by similarity
        neighbors = sorted(neighbors, key=lambda x: x[1], reverse=True)

        print('The 3 nearest neighbors of user', str(u), 'are:')
        for v, sim_uv in neighbors[:3]:
            print('user {0:} with sim {1:1.2f}'.format(v, sim_uv))

        # ... Aaaaand return the baseline estimate anyway ;)







Feel free to explore the prediction_algorithms package source [https://github.com/dhavala/idly/tree/master/idly/prediction_algorithms]
to get an idea of what can be done.







          

      

      

    

  

    
      
          
            
  
Notation standards, References

In the documentation, you will find the following notation:


	\(R\) : the set of all ratings.


	\(R_{train}\), \(R_{test}\) and \(\hat{R}\) denote the training
set, the test set, and the set of predicted ratings.


	\(U\) : the set of all users. \(u\) and \(v\) denotes users.


	\(I\) : the set of all items. \(i\) and \(j\) denotes items.


	\(U_i\) : the set of all users that have rated item \(i\).


	\(U_{ij}\) : the set of all users that have rated both items \(i\)
and \(j\).


	\(I_u\) : the set of all items rated by user \(u\).


	\(I_{uv}\) : the set of all items rated by both users \(u\)
and \(v\).


	\(r_{ui}\) : the true rating of user \(u\) for item
\(i\).


	\(\hat{r}_{ui}\) : the estimated rating of user \(u\) for item
\(i\).


	\(b_{ui}\) : the baseline rating of user \(u\) for item \(i\).


	\(\mu\) : the mean of all ratings.


	\(\mu_u\) : the mean of all ratings given by user \(u\).


	\(\mu_i\) : the mean of all ratings given to item \(i\).


	\(\sigma_u\) : the standard deviation of all ratings given by user \(u\).


	\(\sigma_i\) : the standard deviation of all ratings given to item \(i\).


	\(N_i^k(u)\) : the \(k\) nearest neighbors of user \(u\) that
have rated item \(i\). This set is computed using a similarity
metric.


	\(N_u^k(i)\) : the \(k\) nearest neighbors of item \(i\) that
are rated by user \(u\). This set is computed using a similarity
metric.
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FAQ

You will find here the Frequently Asked Questions, as well as some other
use-case examples that are not part of the User Guide.


How to get the top-N recommendations for each user

Here is an example where we retrieve retrieve the top-10 items with highest
rating prediction for each user in the MovieLens-100k dataset. We first train
an SVD algorithm on the whole dataset, and then predict all the ratings for the
pairs (user, item) that are not in the training set. We then retrieve the
top-10 prediction for each user.


From file examples/top_n_recommendations.py

from collections import defaultdict

from surprise import SVD
from surprise import Dataset


def get_top_n(predictions, n=10):
    '''Return the top-N recommendation for each user from a set of predictions.

    Args:
        predictions(list of Prediction objects): The list of predictions, as
            returned by the test method of an algorithm.
        n(int): The number of recommendation to output for each user. Default
            is 10.

    Returns:
    A dict where keys are user (raw) ids and values are lists of tuples:
        [(raw item id, rating estimation), ...] of size n.
    '''

    # First map the predictions to each user.
    top_n = defaultdict(list)
    for uid, iid, true_r, est, _ in predictions:
        top_n[uid].append((iid, est))

    # Then sort the predictions for each user and retrieve the k highest ones.
    for uid, user_ratings in top_n.items():
        user_ratings.sort(key=lambda x: x[1], reverse=True)
        top_n[uid] = user_ratings[:n]

    return top_n


# First train an SVD algorithm on the movielens dataset.
data = Dataset.load_builtin('ml-100k')
trainset = data.build_full_trainset()
algo = SVD()
algo.fit(trainset)

# Than predict ratings for all pairs (u, i) that are NOT in the training set.
testset = trainset.build_anti_testset()
predictions = algo.test(testset)

top_n = get_top_n(predictions, n=10)

# Print the recommended items for each user
for uid, user_ratings in top_n.items():
    print(uid, [iid for (iid, _) in user_ratings])










How to compute precision@k and recall@k

Here is an example where we compute Precision@k and Recall@k for each user:

\(\text{Precision@k} = \frac{ | \{ \text{Recommended items that are relevant} \} | }{ | \{ \text{Recommended items} \} | }\)
\(\text{Recall@k} = \frac{ | \{ \text{Recommended items that are relevant} \} | }{ | \{ \text{Relevant items} \} | }\)

An item is considered relevant if its true rating \(r_{ui}\) is greater
than a given threshold.  An item is considered recommended if its estimated
rating \(\hat{r}_{ui}\) is greater than the threshold, and if it is among
the k highest estimated ratings.


From file examples/precision_recall_at_k.py

from collections import defaultdict

from surprise import Dataset
from surprise import SVD
from surprise.model_selection import KFold


def precision_recall_at_k(predictions, k=10, threshold=3.5):
    '''Return precision and recall at k metrics for each user.'''

    # First map the predictions to each user.
    user_est_true = defaultdict(list)
    for uid, _, true_r, est, _ in predictions:
        user_est_true[uid].append((est, true_r))

    precisions = dict()
    recalls = dict()
    for uid, user_ratings in user_est_true.items():

        # Sort user ratings by estimated value
        user_ratings.sort(key=lambda x: x[0], reverse=True)

        # Number of relevant items
        n_rel = sum((true_r >= threshold) for (_, true_r) in user_ratings)

        # Number of recommended items in top k
        n_rec_k = sum((est >= threshold) for (est, _) in user_ratings[:k])

        # Number of relevant and recommended items in top k
        n_rel_and_rec_k = sum(((true_r >= threshold) and (est >= threshold))
                              for (est, true_r) in user_ratings[:k])

        # Precision@K: Proportion of recommended items that are relevant
        precisions[uid] = n_rel_and_rec_k / n_rec_k if n_rec_k != 0 else 1

        # Recall@K: Proportion of relevant items that are recommended
        recalls[uid] = n_rel_and_rec_k / n_rel if n_rel != 0 else 1

    return precisions, recalls


data = Dataset.load_builtin('ml-100k')
kf = KFold(n_splits=5)
algo = SVD()

for trainset, testset in kf.split(data):
    algo.fit(trainset)
    predictions = algo.test(testset)
    precisions, recalls = precision_recall_at_k(predictions, k=5, threshold=4)

    # Precision and recall can then be averaged over all users
    print(sum(prec for prec in precisions.values()) / len(precisions))
    print(sum(rec for rec in recalls.values()) / len(recalls))










How to get the k nearest neighbors of a user (or item)

You can use the get_neighbors() methods of
the algorithm object. This is only relevant for algorithms that use a
similarity measure, such as the k-NN algorithms.

Here is an example where we retrieve the 10 nearest neighbors of the movie Toy
Story from the MovieLens-100k dataset. The output is:

The 10 nearest neighbors of Toy Story are:
Beauty and the Beast (1991)
Raiders of the Lost Ark (1981)
That Thing You Do! (1996)
Lion King, The (1994)
Craft, The (1996)
Liar Liar (1997)
Aladdin (1992)
Cool Hand Luke (1967)
Winnie the Pooh and the Blustery Day (1968)
Indiana Jones and the Last Crusade (1989)





There’s a lot of boilerplate because of the conversions between movie names and
their raw/inner ids (see this note), but it all boils
down to the use of get_neighbors():


From file examples/k_nearest_neighbors.py

import io  # needed because of weird encoding of u.item file

from surprise import KNNBaseline
from surprise import Dataset
from surprise import get_dataset_dir


def read_item_names():
    """Read the u.item file from MovieLens 100-k dataset and return two
    mappings to convert raw ids into movie names and movie names into raw ids.
    """

    file_name = get_dataset_dir() + '/ml-100k/ml-100k/u.item'
    rid_to_name = {}
    name_to_rid = {}
    with io.open(file_name, 'r', encoding='ISO-8859-1') as f:
        for line in f:
            line = line.split('|')
            rid_to_name[line[0]] = line[1]
            name_to_rid[line[1]] = line[0]

    return rid_to_name, name_to_rid


# First, train the algortihm to compute the similarities between items
data = Dataset.load_builtin('ml-100k')
trainset = data.build_full_trainset()
sim_options = {'name': 'pearson_baseline', 'user_based': False}
algo = KNNBaseline(sim_options=sim_options)
algo.fit(trainset)

# Read the mappings raw id <-> movie name
rid_to_name, name_to_rid = read_item_names()

# Retrieve inner id of the movie Toy Story
toy_story_raw_id = name_to_rid['Toy Story (1995)']
toy_story_inner_id = algo.trainset.to_inner_iid(toy_story_raw_id)

# Retrieve inner ids of the nearest neighbors of Toy Story.
toy_story_neighbors = algo.get_neighbors(toy_story_inner_id, k=10)

# Convert inner ids of the neighbors into names.
toy_story_neighbors = (algo.trainset.to_raw_iid(inner_id)
                       for inner_id in toy_story_neighbors)
toy_story_neighbors = (rid_to_name[rid]
                       for rid in toy_story_neighbors)

print()
print('The 10 nearest neighbors of Toy Story are:')
for movie in toy_story_neighbors:
    print(movie)







Naturally, the same can be done for users with minor modifications.




How to serialize an algorithm

Prediction algorithms can be serialized and loaded back using the dump() and load() functions. Here
is a small example where the SVD algorithm is trained on a dataset and
serialized. It is then reloaded and can be used again for making predictions:


From file examples/serialize_algorithm.py

import os

from surprise import SVD
from surprise import Dataset
from surprise import dump


data = Dataset.load_builtin('ml-100k')
trainset = data.build_full_trainset()

algo = SVD()
algo.fit(trainset)

# Compute predictions of the 'original' algorithm.
predictions = algo.test(trainset.build_testset())

# Dump algorithm and reload it.
file_name = os.path.expanduser('~/dump_file')
dump.dump(file_name, algo=algo)
_, loaded_algo = dump.load(file_name)

# We now ensure that the algo is still the same by checking the predictions.
predictions_loaded_algo = loaded_algo.test(trainset.build_testset())
assert predictions == predictions_loaded_algo
print('Predictions are the same')







Algorithms can be serialized along with their predictions, so that can be
further analyzed or compared with other algorithms, using pandas dataframes.
Some examples are given in the two following notebooks:



	Dumping and analysis of the KNNBasic algorithm [http://nbviewer.jupyter.org/github/NicolasHug/Surprise/tree/master/examples/notebooks/KNNBasic_analysis.ipynb/].


	Comparison of two algorithms [http://nbviewer.jupyter.org/github/NicolasHug/Surprise/tree/master/examples/notebooks/Compare.ipynb/].










How to build my own prediction algorithm

There’s a whole guide here.




What are raw and inner ids

Users and items have a raw id and an inner id. Some methods will use/return a
raw id (e.g. the predict() method), while
some other will use/return an inner id.

Raw ids are ids as defined in a rating file or in a pandas dataframe. They can
be strings or numbers. Note though that if the ratings were read from a file
which is the standard scenario, they are represented as strings. This is
important to know if you’re using e.g. predict() or other methods
that accept raw ids as parameters.

On trainset creation, each raw id is mapped to a unique integer called inner
id, which is a lot more suitable for idly [https://nicolashug.github.io/Surprise/] to manipulate. Conversions between
raw and inner ids can be done using the to_inner_uid(), to_inner_iid(), to_raw_uid(), and to_raw_iid() methods of the trainset.




Can I use my own dataset with idly, and can it be a pandas dataframe

Yes, and yes. See the user guide.




How to tune an algorithm parameters

You can tune the parameters of an algorithm with the GridSearchCV class as described here. After the tuning, you may want to have an
unbiased estimate of your algorithm performances.




How to get accuracy measures on the training set

You can use the build_testset() method of the Trainset object to build a testset that can be then used
with the test() method:


From file examples/evaluate_on_trainset.py

from surprise import Dataset
from surprise import SVD
from surprise import accuracy
from surprise.model_selection import KFold


data = Dataset.load_builtin('ml-100k')

algo = SVD()

trainset = data.build_full_trainset()
algo.fit(trainset)

testset = trainset.build_testset()
predictions = algo.test(testset)
# RMSE should be low as we are biased
accuracy.rmse(predictions, verbose=True)  # ~ 0.68 (which is low)







Check out the example file for more usage examples.




How to save some data for unbiased accuracy estimation

If your goal is to tune the parameters of an algorithm, you may want to spare a
bit of data to have an unbiased estimation of its performances. For instance
you may want to split your data into two sets A and B. A is used for parameter
tuning using grid search, and B is used for unbiased estimation. This can be
done as follows:


From file examples/split_data_for_unbiased_estimation.py

import random

from surprise import SVD
from surprise import Dataset
from surprise import accuracy
from surprise.model_selection import GridSearchCV


# Load the full dataset.
data = Dataset.load_builtin('ml-100k')
raw_ratings = data.raw_ratings

# shuffle ratings if you want
random.shuffle(raw_ratings)

# A = 90% of the data, B = 10% of the data
threshold = int(.9 * len(raw_ratings))
A_raw_ratings = raw_ratings[:threshold]
B_raw_ratings = raw_ratings[threshold:]

data.raw_ratings = A_raw_ratings  # data is now the set A

# Select your best algo with grid search.
print('Grid Search...')
param_grid = {'n_epochs': [5, 10], 'lr_all': [0.002, 0.005]}
grid_search = GridSearchCV(SVD, param_grid, measures=['rmse'], cv=3)
grid_search.fit(data)

algo = grid_search.best_estimator['rmse']

# retrain on the whole set A
trainset = data.build_full_trainset()
algo.fit(trainset)

# Compute biased accuracy on A
predictions = algo.test(trainset.build_testset())
print('Biased accuracy on A,', end='   ')
accuracy.rmse(predictions)

# Compute unbiased accuracy on B
testset = data.construct_testset(B_raw_ratings)  # testset is now the set B
predictions = algo.test(testset)
print('Unbiased accuracy on B,', end=' ')
accuracy.rmse(predictions)










How to have reproducible experiments

Some algorithms randomly initialize their parameters (sometimes with
numpy), and the cross-validation folds are also randomly generated. If you
need to reproduce your experiments multiple times, you just have to set the
seed of the RNG at the beginning of your program:

import random
import numpy as np

my_seed = 0
random.seed(my_seed)
numpy.random.seed(my_seed)








Where are datasets stored and how to change it?

By default, datasets downloaded by idly will be saved in the
'~/.idly_data' directory. This is also where dump files will be stored.
You can change the default directory by setting the 'IDLY_DATA_FOLDER'
environment variable.







          

      

      

    

  

    
      
          
            
  
prediction_algorithms package

The prediction_algorithms package includes the prediction algorithms
available for recommendation.

The available prediction algorithms are:







	random_pred.NormalPredictor

	Algorithm predicting a random rating based on the distribution of the training set, which is assumed to be normal.



	baseline_only.BaselineOnly

	Algorithm predicting the baseline estimate for given user and item.



	knns.KNNBasic

	A basic collaborative filtering algorithm.



	knns.KNNWithMeans

	A basic collaborative filtering algorithm, taking into account the mean ratings of each user.



	knns.KNNWithZScore

	A basic collaborative filtering algorithm, taking into account     the z-score normalization of each user.



	knns.KNNBaseline

	A basic collaborative filtering algorithm taking into account a baseline rating.



	matrix_factorization.SVD

	The famous SVD algorithm, as popularized by Simon Funk [http://sifter.org/~simon/journal/20061211.html] during the Netflix Prize.



	matrix_factorization.SVDpp

	The SVD++ algorithm, an extension of SVD taking into account implicit ratings.



	matrix_factorization.NMF

	A collaborative filtering algorithm based on Non-negative Matrix Factorization.



	slope_one.SlopeOne

	A simple yet accurate collaborative filtering algorithm.



	co_clustering.CoClustering

	A collaborative filtering algorithm based on co-clustering.






You may want to check the notation standards
before diving into the formulas.



	The algorithm base class

	The predictions module

	Basic algorithms

	k-NN inspired algorithms

	Matrix Factorization-based algorithms

	Slope One

	Co-clustering









          

      

      

    

  

    
      
          
            
  
The algorithm base class

The surprise.prediction_algorithms.algo_base module defines the base
class AlgoBase from which every single prediction algorithm has to
inherit.


	
class idly.prediction_algorithms.algo_base.AlgoBase(**kwargs)

	Abstract class where is defined the basic behavior of a prediction
algorithm.


	Keyword Arguments

	baseline_options (dict, optional) – If the algorithm needs to compute a
baseline estimate, the baseline_options parameter is used to
configure how they are computed. See
Baselines estimates configuration for usage.






	
compute_baselines()

	Compute users and items baselines.

The way baselines are computed depends on the bsl_options parameter
passed at the creation of the algorithm (see
Baselines estimates configuration).

This method is only relevant for algorithms using Pearson
baseline similarty or the
BaselineOnly algorithm.


	Returns

	A tuple (bu, bi), which are users and items baselines.










	
compute_similarities()

	Build the similarity matrix.

The way the similarity matrix is computed depends on the
sim_options parameter passed at the creation of the algorithm (see
Similarity measure configuration).

This method is only relevant for algorithms using a similarity measure,
such as the k-NN algorithms.


	Returns

	The similarity matrix.










	
default_prediction()

	Used when the PredictionImpossible exception is raised during a
call to predict(). By
default, return the global mean of all ratings (can be overridden in
child classes).


	Returns

	The mean of all ratings in the trainset.



	Return type

	(float)










	
fit(trainset)

	Train an algorithm on a given training set.

This method is called by every derived class as the first basic step
for training an algorithm. It basically just initializes some internal
structures and set the self.trainset attribute.


	Parameters

	trainset (Trainset) – A training
set, as returned by the folds method.



	Returns

	self










	
get_neighbors(iid, k)

	Return the k nearest neighbors of iid, which is the inner id
of a user or an item, depending on the user_based field of
sim_options (see Similarity measure configuration).

As the similarities are computed on the basis of a similarity measure,
this method is only relevant for algorithms using a similarity measure,
such as the k-NN algorithms.

For a usage example, see the FAQ.


	Parameters

	
	iid (int) – The (inner) id of the user (or item) for which we want
the nearest neighbors. See this note.


	k (int) – The number of neighbors to retrieve.






	Returns

	The list of the k (inner) ids of the closest users (or items)
to iid.










	
predict(uid, iid, r_ui=None, clip=True, verbose=False)

	Compute the rating prediction for given user and item.

The predict method converts raw ids to inner ids and then calls the
estimate method which is defined in every derived class. If the
prediction is impossible (e.g. because the user and/or the item is
unkown), the prediction is set according to default_prediction().


	Parameters

	
	uid – (Raw) id of the user. See this note.


	iid – (Raw) id of the item. See this note.


	r_ui (float) – The true rating \(r_{ui}\). Optional, default is
None.


	clip (bool) – Whether to clip the estimation into the rating scale.
For example, if \(\hat{r}_{ui}\) is \(5.5\) while the
rating scale is \([1, 5]\), then \(\hat{r}_{ui}\) is
set to \(5\). Same goes if \(\hat{r}_{ui} < 1\).
Default is True.


	verbose (bool) – Whether to print details of the prediction.  Default
is False.






	Returns

	A Prediction object
containing:


	The (raw) user id uid.


	The (raw) item id iid.


	The true rating r_ui (\(\hat{r}_{ui}\)).


	The estimated rating (\(\hat{r}_{ui}\)).


	Some additional details about the prediction that might be useful
for later analysis.















	
test(testset, verbose=False)

	Test the algorithm on given testset, i.e. estimate all the ratings
in the given testset.


	Parameters

	
	testset – A test set, as returned by a cross-validation
itertor or by the
build_testset()
method.


	verbose (bool) – Whether to print details for each predictions.
Default is False.






	Returns

	A list of Prediction objects
that contains all the estimated ratings.










	
train(trainset)

	Deprecated method: use fit()
instead.













          

      

      

    

  

    
      
          
            
  
The predictions module

The surprise.prediction_algorithms.predictions module defines the
Prediction named tuple and the PredictionImpossible
exception.


	
class idly.prediction_algorithms.predictions.Prediction

	A named tuple for storing the results of a prediction.

It’s wrapped in a class, but only for documentation and printing purposes.


	Parameters

	
	uid – The (raw) user id. See this note.


	iid – The (raw) item id. See this note.


	r_ui (float) – The true rating \(r_{ui}\).


	est (float) – The estimated rating \(\hat{r}_{ui}\).


	details (dict) – Stores additional details about the prediction that
might be useful for later analysis.













	
exception idly.prediction_algorithms.predictions.PredictionImpossible

	Exception raised when a prediction is impossible.

When raised, the estimation \(\hat{r}_{ui}\) is set to the global mean
of all ratings \(\mu\).









          

      

      

    

  

    
      
          
            
  
Basic algorithms

These are basic algorithms that do not do much work but that are still useful
for comparing accuracies.


	
class idly.prediction_algorithms.random_pred.NormalPredictor

	Bases: idly.prediction_algorithms.algo_base.AlgoBase

Algorithm predicting a random rating based on the distribution of the
training set, which is assumed to be normal.

The prediction \(\hat{r}_{ui}\) is generated from a normal distribution
\(\mathcal{N}(\hat{\mu}, \hat{\sigma}^2)\) where \(\hat{\mu}\) and
\(\hat{\sigma}\) are estimated from the training data using Maximum
Likelihood Estimation:


\[\begin{split}\hat{\mu} &= \frac{1}{|R_{train}|} \sum_{r_{ui} \in R_{train}}
r_{ui}\\\\        \hat{\sigma} &= \sqrt{\sum_{r_{ui} \in R_{train}}
\frac{(r_{ui} - \hat{\mu})^2}{|R_{train}|}}\end{split}\]






	
class idly.prediction_algorithms.baseline_only.BaselineOnly(bsl_options={}, verbose=True)

	Bases: idly.prediction_algorithms.algo_base.AlgoBase

Algorithm predicting the baseline estimate for given user and item.

\(\hat{r}_{ui} = b_{ui} = \mu + b_u + b_i\)

If user \(u\) is unknown, then the bias \(b_u\) is assumed to be
zero. The same applies for item \(i\) with \(b_i\).

See section 2.1 of [Kor10] for details.


	Parameters

	
	bsl_options (dict) – A dictionary of options for the baseline estimates
computation. See Baselines estimates configuration for
accepted options.


	verbose (bool) – Whether to print trace messages of bias estimation,
similarity, etc.  Default is True.
















          

      

      

    

  

    
      
          
            
  
k-NN inspired algorithms

These are algorithms that are directly derived from a basic nearest neighbors
approach.


Note

For each of these algorithms, the actual number of neighbors that are
aggregated to compute an estimation is necessarily less than or equal to
\(k\). First, there might just not exist enough neighbors and second, the
sets \(N_i^k(u)\) and \(N_u^k(i)\) only include neighbors for which
the similarity measure is positive. It would make no sense to aggregate
ratings from users (or items) that are negatively correlated. For a given
prediction, the actual number of neighbors can be retrieved in the
'actual_k' field of the details dictionary of the prediction.



You may want to read the User Guide
on how to configure the sim_options parameter.


	
class idly.prediction_algorithms.knns.KNNBasic(k=40, min_k=1, sim_options={}, verbose=True, **kwargs)

	Bases: idly.prediction_algorithms.knns.SymmetricAlgo

A basic collaborative filtering algorithm.

The prediction \(\hat{r}_{ui}\) is set as:


\[\hat{r}_{ui} = \frac{
\sum\limits_{v \in N^k_i(u)} \text{sim}(u, v) \cdot r_{vi}}
{\sum\limits_{v \in N^k_i(u)} \text{sim}(u, v)}\]

or


\[\hat{r}_{ui} = \frac{
\sum\limits_{j \in N^k_u(i)} \text{sim}(i, j) \cdot r_{uj}}
{\sum\limits_{j \in N^k_u(j)} \text{sim}(i, j)}\]

depending on the user_based field of the sim_options parameter.


	Parameters

	
	k (int) – The (max) number of neighbors to take into account for
aggregation (see this note). Default is
40.


	min_k (int) – The minimum number of neighbors to take into account for
aggregation. If there are not enough neighbors, the prediction is
set the the global mean of all ratings. Default is 1.


	sim_options (dict) – A dictionary of options for the similarity
measure. See Similarity measure configuration for accepted
options.


	verbose (bool) – Whether to print trace messages of bias estimation,
similarity, etc.  Default is True.













	
class idly.prediction_algorithms.knns.KNNWithMeans(k=40, min_k=1, sim_options={}, verbose=True, **kwargs)

	Bases: idly.prediction_algorithms.knns.SymmetricAlgo

A basic collaborative filtering algorithm, taking into account the mean
ratings of each user.

The prediction \(\hat{r}_{ui}\) is set as:


\[\hat{r}_{ui} = \mu_u + \frac{ \sum\limits_{v \in N^k_i(u)}
\text{sim}(u, v) \cdot (r_{vi} - \mu_v)} {\sum\limits_{v \in
N^k_i(u)} \text{sim}(u, v)}\]

or


\[\hat{r}_{ui} = \mu_i + \frac{ \sum\limits_{j \in N^k_u(i)}
\text{sim}(i, j) \cdot (r_{uj} - \mu_j)} {\sum\limits_{j \in
N^k_u(i)} \text{sim}(i, j)}\]

depending on the user_based field of the sim_options parameter.


	Parameters

	
	k (int) – The (max) number of neighbors to take into account for
aggregation (see this note). Default is
40.


	min_k (int) – The minimum number of neighbors to take into account for
aggregation. If there are not enough neighbors, the neighbor
aggregation is set to zero (so the prediction ends up being
equivalent to the mean \(\mu_u\) or \(\mu_i\)). Default is
1.


	sim_options (dict) – A dictionary of options for the similarity
measure. See Similarity measure configuration for accepted
options.


	verbose (bool) – Whether to print trace messages of bias estimation,
similarity, etc.  Default is True.













	
class idly.prediction_algorithms.knns.KNNWithZScore(k=40, min_k=1, sim_options={}, verbose=True, **kwargs)

	Bases: idly.prediction_algorithms.knns.SymmetricAlgo


	A basic collaborative filtering algorithm, taking into account

	the z-score normalization of each user.





The prediction \(\hat{r}_{ui}\) is set as:


\[\hat{r}_{ui} = \mu_u + \sigma_u \frac{ \sum\limits_{v \in N^k_i(u)}
\text{sim}(u, v) \cdot (r_{vi} - \mu_v) / \sigma_v} {\sum\limits_{v
\in N^k_i(u)} \text{sim}(u, v)}\]

or


\[\hat{r}_{ui} = \mu_i + \sigma_i \frac{ \sum\limits_{j \in N^k_u(i)}
\text{sim}(i, j) \cdot (r_{uj} - \mu_j) / \sigma_j} {\sum\limits_{j
\in N^k_u(i)} \text{sim}(i, j)}\]

depending on the user_based field of the sim_options parameter.

If \(\sigma\) is 0, than the overall sigma is used in that case.


	Parameters

	
	k (int) – The (max) number of neighbors to take into account for
aggregation (see this note). Default is
40.


	min_k (int) – The minimum number of neighbors to take into account for
aggregation. If there are not enough neighbors, the neighbor
aggregation is set to zero (so the prediction ends up being
equivalent to the mean \(\mu_u\) or \(\mu_i\)). Default is
1.


	sim_options (dict) – A dictionary of options for the similarity
measure. See Similarity measure configuration for accepted
options.


	verbose (bool) – Whether to print trace messages of bias estimation,
similarity, etc.  Default is True.













	
class idly.prediction_algorithms.knns.KNNBaseline(k=40, min_k=1, sim_options={}, bsl_options={}, verbose=True, **kwargs)

	Bases: idly.prediction_algorithms.knns.SymmetricAlgo

A basic collaborative filtering algorithm taking into account a
baseline rating.

The prediction \(\hat{r}_{ui}\) is set as:


\[\hat{r}_{ui} = b_{ui} + \frac{ \sum\limits_{v \in N^k_i(u)}
\text{sim}(u, v) \cdot (r_{vi} - b_{vi})} {\sum\limits_{v \in
N^k_i(u)} \text{sim}(u, v)}\]

or


\[\hat{r}_{ui} = b_{ui} + \frac{ \sum\limits_{j \in N^k_u(i)}
\text{sim}(i, j) \cdot (r_{uj} - b_{uj})} {\sum\limits_{j \in
N^k_u(j)} \text{sim}(i, j)}\]

depending on the user_based field of the sim_options parameter. For
the best predictions, use the pearson_baseline similarity measure.

This algorithm corresponds to formula (3), section 2.2 of
[Kor10].


	Parameters

	
	k (int) – The (max) number of neighbors to take into account for
aggregation (see this note). Default is
40.


	min_k (int) – The minimum number of neighbors to take into account for
aggregation. If there are not enough neighbors, the neighbor
aggregation is set to zero (so the prediction ends up being
equivalent to the baseline). Default is 1.


	sim_options (dict) – A dictionary of options for the similarity
measure. See Similarity measure configuration for accepted
options. It is recommended to use the pearson_baseline similarity measure.


	bsl_options (dict) – A dictionary of options for the baseline estimates
computation. See Baselines estimates configuration for
accepted options.


	verbose (bool) – Whether to print trace messages of bias estimation,
similarity, etc.  Default is True.
















          

      

      

    

  

    
      
          
            
  
Matrix Factorization-based algorithms


	
class idly.prediction_algorithms.matrix_factorization.SVD

	Bases: idly.prediction_algorithms.algo_base.AlgoBase

The famous SVD algorithm, as popularized by Simon Funk [http://sifter.org/~simon/journal/20061211.html] during the Netflix
Prize. When baselines are not used, this is equivalent to Probabilistic
Matrix Factorization [SM08] (see note below).

The prediction \(\hat{r}_{ui}\) is set as:


\[\hat{r}_{ui} = \mu + b_u + b_i + q_i^Tp_u\]

If user \(u\) is unknown, then the bias \(b_u\) and the factors
\(p_u\) are assumed to be zero. The same applies for item \(i\)
with \(b_i\) and \(q_i\).

For details, see equation (5) from [KBV09]. See also
[RRSK10], section 5.3.1.

To estimate all the unknown, we minimize the following regularized squared
error:


\[\sum_{r_{ui} \in R_{train}} \left(r_{ui} - \hat{r}_{ui} \right)^2 +
\lambda\left(b_i^2 + b_u^2 + ||q_i||^2 + ||p_u||^2\right)\]

The minimization is performed by a very straightforward stochastic gradient
descent:


\[\begin{split}b_u &\leftarrow b_u &+ \gamma (e_{ui} - \lambda b_u)\\
b_i &\leftarrow b_i &+ \gamma (e_{ui} - \lambda b_i)\\
p_u &\leftarrow p_u &+ \gamma (e_{ui} \cdot q_i - \lambda p_u)\\
q_i &\leftarrow q_i &+ \gamma (e_{ui} \cdot p_u - \lambda q_i)\end{split}\]

where \(e_{ui} = r_{ui} - \hat{r}_{ui}\). These steps are performed
over all the ratings of the trainset and repeated n_epochs times.
Baselines are initialized to 0. User and item factors are randomly
initialized according to a normal distribution, which can be tuned using
the init_mean and init_std_dev parameters.

You also have control over the learning rate \(\gamma\) and the
regularization term \(\lambda\). Both can be different for each
kind of parameter (see below). By default, learning rates are set to
0.005 and regularization terms are set to 0.02.


Note

You can choose to use an unbiased version of this algorithm, simply
predicting:


\[\hat{r}_{ui} = q_i^Tp_u\]

This is equivalent to Probabilistic Matrix Factorization
([SM08], section 2) and can be achieved by setting
the biased parameter to False.




	Parameters

	
	n_factors – The number of factors. Default is 100.


	n_epochs – The number of iteration of the SGD procedure. Default is
20.


	biased (bool) – Whether to use baselines (or biases). See note above.  Default is True.


	init_mean – The mean of the normal distribution for factor vectors
initialization. Default is 0.


	init_std_dev – The standard deviation of the normal distribution for
factor vectors initialization. Default is 0.1.


	lr_all – The learning rate for all parameters. Default is 0.005.


	reg_all – The regularization term for all parameters. Default is
0.02.


	lr_bu – The learning rate for \(b_u\). Takes precedence over
lr_all if set. Default is None.


	lr_bi – The learning rate for \(b_i\). Takes precedence over
lr_all if set. Default is None.


	lr_pu – The learning rate for \(p_u\). Takes precedence over
lr_all if set. Default is None.


	lr_qi – The learning rate for \(q_i\). Takes precedence over
lr_all if set. Default is None.


	reg_bu – The regularization term for \(b_u\). Takes precedence
over reg_all if set. Default is None.


	reg_bi – The regularization term for \(b_i\). Takes precedence
over reg_all if set. Default is None.


	reg_pu – The regularization term for \(p_u\). Takes precedence
over reg_all if set. Default is None.


	reg_qi – The regularization term for \(q_i\). Takes precedence
over reg_all if set. Default is None.


	random_state (int, RandomState instance from numpy, or None) – Determines the RNG that will be used for initialization. If
int, random_state will be used as a seed for a new RNG. This is
useful to get the same initialization over multiple calls to
fit().  If RandomState instance, this same instance is used as
RNG. If None, the current RNG from numpy is used.  Default is
None.


	verbose – If True, prints the current epoch. Default is False.









	
pu

	numpy array of size (n_users, n_factors) – The user factors (only
exists if fit() has been called)






	
qi

	numpy array of size (n_items, n_factors) – The item factors (only
exists if fit() has been called)






	
bu

	numpy array of size (n_users) – The user biases (only
exists if fit() has been called)






	
bi

	numpy array of size (n_items) – The item biases (only
exists if fit() has been called)










	
class idly.prediction_algorithms.matrix_factorization.SVDpp

	Bases: idly.prediction_algorithms.algo_base.AlgoBase

The SVD++ algorithm, an extension of SVD taking into account
implicit ratings.

The prediction \(\hat{r}_{ui}\) is set as:


\[\hat{r}_{ui} = \mu + b_u + b_i + q_i^T\left(p_u +
|I_u|^{-\frac{1}{2}} \sum_{j \in I_u}y_j\right)\]

Where the \(y_j\) terms are a new set of item factors that capture
implicit ratings. Here, an implicit rating describes the fact that a user
\(u\) rated an item \(j\), regardless of the rating value.

If user \(u\) is unknown, then the bias \(b_u\) and the factors
\(p_u\) are assumed to be zero. The same applies for item \(i\)
with \(b_i\), \(q_i\) and \(y_i\).

For details, see section 4 of [Kor08]. See also
[RRSK10], section 5.3.1.

Just as for SVD, the parameters are learned using a SGD on the
regularized squared error objective.

Baselines are initialized to 0. User and item factors are randomly
initialized according to a normal distribution, which can be tuned using
the init_mean and init_std_dev parameters.

You have control over the learning rate \(\gamma\) and the
regularization term \(\lambda\). Both can be different for each
kind of parameter (see below). By default, learning rates are set to
0.005 and regularization terms are set to 0.02.


	Parameters

	
	n_factors – The number of factors. Default is 20.


	n_epochs – The number of iteration of the SGD procedure. Default is
20.


	init_mean – The mean of the normal distribution for factor vectors
initialization. Default is 0.


	init_std_dev – The standard deviation of the normal distribution for
factor vectors initialization. Default is 0.1.


	lr_all – The learning rate for all parameters. Default is 0.007.


	reg_all – The regularization term for all parameters. Default is
0.02.


	lr_bu – The learning rate for \(b_u\). Takes precedence over
lr_all if set. Default is None.


	lr_bi – The learning rate for \(b_i\). Takes precedence over
lr_all if set. Default is None.


	lr_pu – The learning rate for \(p_u\). Takes precedence over
lr_all if set. Default is None.


	lr_qi – The learning rate for \(q_i\). Takes precedence over
lr_all if set. Default is None.


	lr_yj – The learning rate for \(y_j\). Takes precedence over
lr_all if set. Default is None.


	reg_bu – The regularization term for \(b_u\). Takes precedence
over reg_all if set. Default is None.


	reg_bi – The regularization term for \(b_i\). Takes precedence
over reg_all if set. Default is None.


	reg_pu – The regularization term for \(p_u\). Takes precedence
over reg_all if set. Default is None.


	reg_qi – The regularization term for \(q_i\). Takes precedence
over reg_all if set. Default is None.


	reg_yj – The regularization term for \(y_j\). Takes precedence
over reg_all if set. Default is None.


	random_state (int, RandomState instance from numpy, or None) – Determines the RNG that will be used for initialization. If
int, random_state will be used as a seed for a new RNG. This is
useful to get the same initialization over multiple calls to
fit().  If RandomState instance, this same instance is used as
RNG. If None, the current RNG from numpy is used.  Default is
None.


	verbose – If True, prints the current epoch. Default is False.









	
pu

	numpy array of size (n_users, n_factors) – The user factors (only
exists if fit() has been called)






	
qi

	numpy array of size (n_items, n_factors) – The item factors (only
exists if fit() has been called)






	
yj

	numpy array of size (n_items, n_factors) – The (implicit) item
factors (only exists if fit() has been called)






	
bu

	numpy array of size (n_users) – The user biases (only
exists if fit() has been called)






	
bi

	numpy array of size (n_items) – The item biases (only
exists if fit() has been called)










	
class idly.prediction_algorithms.matrix_factorization.NMF

	Bases: idly.prediction_algorithms.algo_base.AlgoBase

A collaborative filtering algorithm based on Non-negative Matrix
Factorization.

This algorithm is very similar to SVD. The prediction
\(\hat{r}_{ui}\) is set as:


\[\hat{r}_{ui} = q_i^Tp_u,\]

where user and item factors are kept positive. Our implementation
follows that suggested in [LZXZ14], which is equivalent to
[ZWFM96] in its non-regularized form. Both are direct applications
of NMF for dense matrices [LS01].

The optimization procedure is a (regularized) stochastic gradient descent
with a specific choice of step size that ensures non-negativity of factors,
provided that their initial values are also positive.

At each step of the SGD procedure, the factors \(f\) or user \(u\)
and item \(i\) are updated as follows:


\[\begin{split}p_{uf} &\leftarrow p_{uf} &\cdot \frac{\sum_{i \in I_u} q_{if}
\cdot r_{ui}}{\sum_{i \in I_u} q_{if} \cdot \hat{r_{ui}} +
\lambda_u |I_u| p_{uf}}\\
q_{if} &\leftarrow q_{if} &\cdot \frac{\sum_{u \in U_i} p_{uf}
\cdot r_{ui}}{\sum_{u \in U_i} p_{uf} \cdot \hat{r_{ui}} +
\lambda_i |U_i| q_{if}}\\\end{split}\]

where \(\lambda_u\) and \(\lambda_i\) are regularization
parameters.

This algorithm is highly dependent on initial values. User and item factors
are uniformly initialized between init_low and init_high. Change
them at your own risks!

A biased version is available by setting the biased parameter to
True. In this case, the prediction is set as


\[\hat{r}_{ui} = \mu + b_u + b_i + q_i^Tp_u,\]

still ensuring positive factors. Baselines are optimized in the same way as
in the SVD algorithm. While yielding better accuracy, the biased
version seems highly prone to overfitting so you may want to reduce the
number of factors (or increase regularization).


	Parameters

	
	n_factors – The number of factors. Default is 15.


	n_epochs – The number of iteration of the SGD procedure. Default is
50.


	biased (bool) – Whether to use baselines (or biases). Default is
False.


	reg_pu – The regularization term for users \(\lambda_u\). Default is
0.06.


	reg_qi – The regularization term for items \(\lambda_i\). Default is
0.06.


	reg_bu – The regularization term for \(b_u\). Only relevant for
biased version. Default is 0.02.


	reg_bi – The regularization term for \(b_i\). Only relevant for
biased version. Default is 0.02.


	lr_bu – The learning rate for \(b_u\). Only relevant for biased
version. Default is 0.005.


	lr_bi – The learning rate for \(b_i\). Only relevant for biased
version. Default is 0.005.


	init_low – Lower bound for random initialization of factors. Must be
greater than 0 to ensure non-negative factors. Default is
0.


	init_high – Higher bound for random initialization of factors. Default
is 1.


	random_state (int, RandomState instance from numpy, or None) – Determines the RNG that will be used for initialization. If
int, random_state will be used as a seed for a new RNG. This is
useful to get the same initialization over multiple calls to
fit().  If RandomState instance, this same instance is used as
RNG. If None, the current RNG from numpy is used.  Default is
None.


	verbose – If True, prints the current epoch. Default is False.









	
pu

	numpy array of size (n_users, n_factors) – The user factors (only
exists if fit() has been called)






	
qi

	numpy array of size (n_items, n_factors) – The item factors (only
exists if fit() has been called)






	
bu

	numpy array of size (n_users) – The user biases (only
exists if fit() has been called)






	
bi

	numpy array of size (n_items) – The item biases (only
exists if fit() has been called)













          

      

      

    

  

    
      
          
            
  
Slope One


	
class idly.prediction_algorithms.slope_one.SlopeOne

	Bases: idly.prediction_algorithms.algo_base.AlgoBase

A simple yet accurate collaborative filtering algorithm.

This is a straightforward implementation of the SlopeOne algorithm
[LM07].

The prediction \(\hat{r}_{ui}\) is set as:


\[\hat{r}_{ui} = \mu_u + \frac{1}{
|R_i(u)|}
\sum\limits_{j \in R_i(u)} \text{dev}(i, j),\]

where \(R_i(u)\) is the set of relevant items, i.e. the set of items
\(j\) rated by \(u\) that also have at least one common user with
\(i\). \(\text{dev}_(i, j)\) is defined as the average difference
between the ratings of \(i\) and those of \(j\):


\[\text{dev}(i, j) = \frac{1}{
|U_{ij}|}\sum\limits_{u \in U_{ij}} r_{ui} - r_{uj}\]









          

      

      

    

  

    
      
          
            
  
Co-clustering


	
class idly.prediction_algorithms.co_clustering.CoClustering

	Bases: idly.prediction_algorithms.algo_base.AlgoBase

A collaborative filtering algorithm based on co-clustering.

This is a straightforward implementation of [GM05].

Basically, users and items are assigned some clusters \(C_u\),
\(C_i\), and some co-clusters \(C_{ui}\).

The prediction \(\hat{r}_{ui}\) is set as:


\[\hat{r}_{ui} = \overline{C_{ui}} + (\mu_u - \overline{C_u}) + (\mu_i
- \overline{C_i}),\]

where \(\overline{C_{ui}}\) is the average rating of co-cluster
\(C_{ui}\), \(\overline{C_u}\) is the average rating of
\(u\)‘s cluster, and \(\overline{C_i}\) is the average rating of
\(i\)‘s cluster. If the user is unknown, the prediction is
\(\hat{r}_{ui} = \mu_i\). If the item is unknown, the prediction is
\(\hat{r}_{ui} = \mu_u\). If both the user and the item are unknown,
the prediction is \(\hat{r}_{ui} = \mu\).

Clusters are assigned using a straightforward optimization method, much
like k-means.


	Parameters

	
	n_cltr_u (int) – Number of user clusters. Default is 3.


	n_cltr_i (int) – Number of item clusters. Default is 3.


	n_epochs (int) – Number of iteration of the optimization loop. Default is
20.


	random_state (int, RandomState instance from numpy, or None) – Determines the RNG that will be used for initialization. If
int, random_state will be used as a seed for a new RNG. This is
useful to get the same initialization over multiple calls to
fit().  If RandomState instance, this same instance is used as
RNG. If None, the current RNG from numpy is used.  Default is
None.


	verbose (bool) – If True, the current epoch will be printed. Default is
False.
















          

      

      

    

  

    
      
          
            
  
The model_selection package

idly provides various tools to run cross-validation procedures and search
the best parameters for a prediction algorithm. The tools presented here are
all heavily inspired from the excellent scikit learn [http://scikit-learn.org/stable/modules/classes.html#module-sklearn.model_selection]
library.


Cross validation iterators

The model_selection.split module
contains various cross-validation iterators. Design and tools are inspired from
the mighty scikit learn.

The available iterators are:







	KFold

	A basic cross-validation iterator.



	RepeatedKFold

	Repeated KFold cross validator.



	ShuffleSplit

	A basic cross-validation iterator with random trainsets and testsets.



	LeaveOneOut

	Cross-validation iterator where each user has exactly one rating in the testset.



	PredefinedKFold

	A cross-validation iterator to when a dataset has been loaded with the load_from_folds method.






This module also contains a function for splitting datasets into trainset and
testset:







	train_test_split

	Split a dataset into trainset and testset.







	
class idly.model_selection.split.KFold(n_splits=5, random_state=None, shuffle=True)

	A basic cross-validation iterator.

Each fold is used once as a testset while the k - 1 remaining folds are
used for training.

See an example in the User Guide.


	Parameters

	
	n_splits (int) – The number of folds.


	random_state (int, RandomState instance from numpy, or None) – Determines the RNG that will be used for determining the folds. If
int, random_state will be used as a seed for a new RNG. This is
useful to get the same splits over multiple calls to split().
If RandomState instance, this same instance is used as RNG. If
None, the current RNG from numpy is used. random_state is
only used if shuffle is True.  Default is None.


	shuffle (bool) – Whether to shuffle the ratings in the data parameter
of the split() method. Shuffling is not done in-place. Default
is True.









	
split(data)

	Generator function to iterate over trainsets and testsets.


	Parameters

	data (Dataset) – The data containing
ratings that will be devided into trainsets and testsets.



	Yields

	tuple of (trainset, testset)














	
class idly.model_selection.split.LeaveOneOut(n_splits=5, random_state=None, min_n_ratings=0)

	Cross-validation iterator where each user has exactly one rating in the
testset.

Contrary to other cross-validation strategies, LeaveOneOut does not
guarantee that all folds will be different, although this is still very
likely for sizeable datasets.

See an example in the User Guide.


	Parameters

	
	n_splits (int) – The number of folds.


	random_state (int, RandomState instance from numpy, or None) – Determines the RNG that will be used for determining the folds. If
int, random_state will be used as a seed for a new RNG. This is
useful to get the same splits over multiple calls to split().
If RandomState instance, this same instance is used as RNG. If
None, the current RNG from numpy is used. random_state is
only used if shuffle is True.  Default is None.


	min_n_ratings (int) – Minimum number of ratings for each user in the
trainset. E.g. if min_n_ratings is 2, we are sure each user
has at least 2 ratings in the trainset (and 1 in the
testset). Other users are discarded. Default is 0, so some
users (having only one rating) may be in the testset and not in the
trainset.









	
split(data)

	Generator function to iterate over trainsets and testsets.


	Parameters

	data (Dataset) – The data containing
ratings that will be devided into trainsets and testsets.



	Yields

	tuple of (trainset, testset)














	
class idly.model_selection.split.PredefinedKFold

	A cross-validation iterator to when a dataset has been loaded with the
load_from_folds
method.

See an example in the User Guide.


	
split(data)

	Generator function to iterate over trainsets and testsets.


	Parameters

	data (Dataset) – The data containing
ratings that will be devided into trainsets and testsets.



	Yields

	tuple of (trainset, testset)














	
class idly.model_selection.split.RepeatedKFold(n_splits=5, n_repeats=10, random_state=None)

	Repeated KFold cross validator.

Repeats KFold n times with different randomization in each
repetition.

See an example in the User Guide.


	Parameters

	
	n_splits (int) – The number of folds.


	n_repeats (int) – The number of repetitions.


	random_state (int, RandomState instance from numpy, or None) – Determines the RNG that will be used for determining the folds. If
int, random_state will be used as a seed for a new RNG. This is
useful to get the same splits over multiple calls to split().
If RandomState instance, this same instance is used as RNG. If
None, the current RNG from numpy is used. random_state is
only used if shuffle is True.  Default is None.


	shuffle (bool) – Whether to shuffle the ratings in the data parameter
of the split() method. Shuffling is not done in-place. Default
is True.









	
split(data)

	Generator function to iterate over trainsets and testsets.


	Parameters

	data (Dataset) – The data containing
ratings that will be devided into trainsets and testsets.



	Yields

	tuple of (trainset, testset)














	
class idly.model_selection.split.ShuffleSplit(n_splits=5, test_size=0.2, train_size=None, random_state=None, shuffle=True)

	A basic cross-validation iterator with random trainsets and testsets.

Contrary to other cross-validation strategies, random splits do not
guarantee that all folds will be different, although this is still very
likely for sizeable datasets.

See an example in the User Guide.


	Parameters

	
	n_splits (int) – The number of folds.


	test_size (float or int None) – If float, it represents the
proportion of ratings to include in the testset. If int,
represents the absolute number of ratings in the testset. If
None, the value is set to the complement of the trainset size.
Default is .2.


	train_size (float or int or None) – If float, it represents the
proportion of ratings to include in the trainset. If int,
represents the absolute number of ratings in the trainset. If
None, the value is set to the complement of the testset size.
Default is None.


	random_state (int, RandomState instance from numpy, or None) – Determines the RNG that will be used for determining the folds. If
int, random_state will be used as a seed for a new RNG. This is
useful to get the same splits over multiple calls to split().
If RandomState instance, this same instance is used as RNG. If
None, the current RNG from numpy is used. random_state is
only used if shuffle is True.  Default is None.


	shuffle (bool) – Whether to shuffle the ratings in the data parameter
of the split() method. Shuffling is not done in-place. Setting
this to False defeats the purpose of this iterator, but it’s
useful for the implementation of train_test_split(). Default
is True.









	
split(data)

	Generator function to iterate over trainsets and testsets.


	Parameters

	data (Dataset) – The data containing
ratings that will be devided into trainsets and testsets.



	Yields

	tuple of (trainset, testset)














	
idly.model_selection.split.train_test_split(data, test_size=0.2, train_size=None, random_state=None, shuffle=True)

	Split a dataset into trainset and testset.

See an example in the User Guide.

Note: this function cannot be used as a cross-validation iterator.


	Parameters

	
	data (Dataset) – The dataset to split
into trainset and testset.


	test_size (float or int None) – If float, it represents the
proportion of ratings to include in the testset. If int,
represents the absolute number of ratings in the testset. If
None, the value is set to the complement of the trainset size.
Default is .2.


	train_size (float or int or None) – If float, it represents the
proportion of ratings to include in the trainset. If int,
represents the absolute number of ratings in the trainset. If
None, the value is set to the complement of the testset size.
Default is None.


	random_state (int, RandomState instance from numpy, or None) – Determines the RNG that will be used for determining the folds. If
int, random_state will be used as a seed for a new RNG. This is
useful to get the same splits over multiple calls to split().
If RandomState instance, this same instance is used as RNG. If
None, the current RNG from numpy is used. random_state is
only used if shuffle is True.  Default is None.


	shuffle (bool) – Whether to shuffle the ratings in the data
parameter. Shuffling is not done in-place. Default is True.















Cross validation


	
idly.model_selection.validation.cross_validate(algo, data, measures=[u'rmse', u'mae'], cv=None, return_train_measures=False, n_jobs=1, pre_dispatch=u'2*n_jobs', verbose=False)

	Run a cross validation procedure for a given algorithm, reporting accuracy
measures and computation times.

See an example in the User Guide.


	Parameters

	
	algo (AlgoBase) – The algorithm to evaluate.


	data (Dataset) – The dataset on which
to evaluate the algorithm.


	measures (list of string) – The performance measures to compute. Allowed
names are function names as defined in the accuracy module. Default is ['rmse', 'mae'].


	cv (cross-validation iterator, int or None) – Determines how the
data parameter will be split (i.e. how trainsets and testsets
will be defined). If an int is passed, KFold is used with the
appropriate n_splits parameter. If None, KFold is used with
n_splits=5.


	return_train_measures (bool) – Whether to compute performance measures on
the trainsets. Default is False.


	n_jobs (int) – The maximum number of folds evaluated in parallel.


	If -1, all CPUs are used.


	If 1 is given, no parallel computing code is used at all,                which is useful for debugging.


	For n_jobs below -1, (n_cpus + n_jobs + 1) are                used.  For example, with n_jobs = -2 all CPUs but one are                used.




Default is 1.




	pre_dispatch (int or string) – Controls the number of jobs that get
dispatched during parallel execution. Reducing this number can be
useful to avoid an explosion of memory consumption when more jobs
get dispatched than CPUs can process. This parameter can be:


	None, in which case all the jobs are immediately created                and spawned. Use this for lightweight and fast-running                jobs, to avoid delays due to on-demand spawning of the                jobs.


	An int, giving the exact number of total jobs that are                spawned.


	A string, giving an expression as a function of n_jobs,                as in '2*n_jobs'.




Default is '2*n_jobs'.




	verbose (int) – If True accuracy measures for each split are printed,
as well as train and test times. Averages and standard deviations
over all splits are also reported. Default is False: nothing is
printed.






	Returns

	A dict with the following keys:



	'test_*' where * corresponds to a lower-case accuracy
measure, e.g. 'test_rmse': numpy array with accuracy values
for each testset.


	'train_*' where * corresponds to a lower-case accuracy
measure, e.g. 'train_rmse': numpy array with accuracy values
for each trainset. Only available if return_train_measures is
True.


	'fit_time': numpy array with the training time in seconds for
each split.


	'test_time': numpy array with the testing time in seconds for
each split.











	Return type

	dict












Parameter search


	
class idly.model_selection.search.GridSearchCV(algo_class, param_grid, measures=[u'rmse', u'mae'], cv=None, refit=False, return_train_measures=False, n_jobs=1, pre_dispatch=u'2*n_jobs', joblib_verbose=0)

	The GridSearchCV class computes accuracy metrics for an
algorithm on various combinations of parameters, over a cross-validation
procedure. This is useful for finding the best set of parameters for a
prediction algorithm. It is analogous to GridSearchCV [http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html] from scikit-learn.

See an example in the User Guide.


	Parameters

	
	algo_class (AlgoBase) – The class
of the algorithm to evaluate.


	param_grid (dict) – Dictionary with algorithm parameters as keys and
list of values as keys. All combinations will be evaluated with
desired algorithm. Dict parameters such as sim_options require
special treatment, see this note.


	measures (list of string) – The performance measures to compute. Allowed
names are function names as defined in the accuracy module.  Default is ['rmse', 'mae'].


	cv (cross-validation iterator, int or None) – Determines how the
data parameter will be split (i.e. how trainsets and testsets
will be defined). If an int is passed, KFold is used with the
appropriate n_splits parameter. If None, KFold is used with
n_splits=5.


	refit (bool or str) – If True, refit the algorithm on the whole
dataset using the set of parameters that gave the best average
performance for the first measure of measures. Other measures
can be used by passing a string (corresponding to the measure
name). Then, you can use the test() and predict() methods.
refit can only be used if the data parameter given to
fit() hasn’t been loaded with load_from_folds(). Default is False.


	return_train_measures (bool) – Whether to compute performance measures on
the trainsets. If True, the cv_results attribute will
also contain measures for trainsets. Default is False.


	n_jobs (int) – The maximum number of parallel training procedures.


	If -1, all CPUs are used.


	If 1 is given, no parallel computing code is used at all,                which is useful for debugging.


	For n_jobs below -1, (n_cpus + n_jobs + 1) are                used.  For example, with n_jobs = -2 all CPUs but one are                used.




Default is 1.




	pre_dispatch (int or string) – Controls the number of jobs that get
dispatched during parallel execution. Reducing this number can be
useful to avoid an explosion of memory consumption when more jobs
get dispatched than CPUs can process. This parameter can be:


	None, in which case all the jobs are immediately created                and spawned. Use this for lightweight and fast-running                jobs, to avoid delays due to on-demand spawning of the                jobs.


	An int, giving the exact number of total jobs that are                spawned.


	A string, giving an expression as a function of n_jobs,                as in '2*n_jobs'.




Default is '2*n_jobs'.




	joblib_verbose (int) – Controls the verbosity of joblib: the higher, the
more messages.









	
best_estimator

	dict of AlgoBase – Using an accuracy measure as key, get the algorithm that gave the
best accuracy results for the chosen measure, averaged over all
splits.






	
best_score

	dict of floats – Using an accuracy measure as key, get the best average score
achieved for that measure.






	
best_params

	dict of dicts – Using an accuracy measure as key, get the parameters combination
that gave the best accuracy results for the chosen measure (on
average).






	
best_index

	dict of ints – Using an accuracy measure as key, get the index that can be used
with cv_results that achieved the highest accuracy for that
measure (on average).






	
cv_results

	dict of arrays – A dict that contains accuracy measures over all splits, as well as
train and test time for each parameter combination. Can be imported
into a pandas DataFrame (see example).






	
fit(data)

	Runs the fit() method of the algorithm for all parameter
combinations, over different splits given by the cv parameter.


	Parameters

	data (Dataset) – The dataset on
which to evaluate the algorithm, in parallel.










	
predict(*args)

	Call predict() on the estimator with the best found parameters
(according the the refit parameter). See AlgoBase.predict().

Only available if refit is not False.






	
test(testset, verbose=False)

	Call test() on the estimator with the best found parameters
(according the the refit parameter). See AlgoBase.test().

Only available if refit is not False.










	
class idly.model_selection.search.RandomizedSearchCV(algo_class, param_distributions, n_iter=10, measures=[u'rmse', u'mae'], cv=None, refit=False, return_train_measures=False, n_jobs=1, pre_dispatch=u'2*n_jobs', random_state=None, joblib_verbose=0)

	The RandomizedSearchCV class computes accuracy metrics for an
algorithm on various combinations of parameters, over a cross-validation
procedure. As opposed to GridSearchCV, which uses an exhaustive
combinatorial approach, RandomizedSearchCV samples randomly from the
parameter space. This is useful for finding the best set of parameters
for a prediction algorithm, especially using a coarse to fine approach.
It is analogous to RandomizedSearchCV [http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html] from
scikit-learn.

See an example in the User Guide.


	Parameters

	
	algo_class (AlgoBase) – The class
of the algorithm to evaluate.


	param_distributions (dict) – Dictionary with algorithm parameters as
keys and distributions or lists of parameters to try. Distributions
must provide a rvs method for sampling (such as those from
scipy.stats.distributions). If a list is given, it is sampled
uniformly. Parameters will be sampled n_iter times.


	n_iter (int) – Number of times parameter settings are sampled. Default is
10.


	measures (list of string) – The performance measures to compute. Allowed
names are function names as defined in the accuracy module.  Default is ['rmse', 'mae'].


	cv (cross-validation iterator, int or None) – Determines how the
data parameter will be split (i.e. how trainsets and testsets
will be defined). If an int is passed, KFold is used with the
appropriate n_splits parameter. If None, KFold is used with
n_splits=5.


	refit (bool or str) – If True, refit the algorithm on the whole
dataset using the set of parameters that gave the best average
performance for the first measure of measures. Other measures
can be used by passing a string (corresponding to the measure
name). Then, you can use the test() and predict() methods.
refit can only be used if the data parameter given to
fit() hasn’t been loaded with load_from_folds(). Default is False.


	return_train_measures (bool) – Whether to compute performance measures on
the trainsets. If True, the cv_results attribute will
also contain measures for trainsets. Default is False.


	n_jobs (int) – The maximum number of parallel training procedures.


	If -1, all CPUs are used.


	If 1 is given, no parallel computing code is used at all,                which is useful for debugging.


	For n_jobs below -1, (n_cpus + n_jobs + 1) are                used.  For example, with n_jobs = -2 all CPUs but one are                used.




Default is 1.




	pre_dispatch (int or string) – Controls the number of jobs that get
dispatched during parallel execution. Reducing this number can be
useful to avoid an explosion of memory consumption when more jobs
get dispatched than CPUs can process. This parameter can be:


	None, in which case all the jobs are immediately created                and spawned. Use this for lightweight and fast-running                jobs, to avoid delays due to on-demand spawning of the                jobs.


	An int, giving the exact number of total jobs that are                spawned.


	A string, giving an expression as a function of n_jobs,                as in '2*n_jobs'.




Default is '2*n_jobs'.




	random_state (int, RandomState or None) – Pseudo random number
generator seed used for random uniform sampling from lists of
possible values instead of scipy.stats distributions. If int,
random_state is the seed used by the random number generator.
If RandomState instance, random_state is the random number
generator. If None, the random number generator is the
RandomState instance used by np.random.  Default is None.


	joblib_verbose (int) – Controls the verbosity of joblib: the higher, the
more messages.









	
best_estimator

	dict of AlgoBase – Using an accuracy measure as key, get the algorithm that gave the
best accuracy results for the chosen measure, averaged over all
splits.






	
best_score

	dict of floats – Using an accuracy measure as key, get the best average score
achieved for that measure.






	
best_params

	dict of dicts – Using an accuracy measure as key, get the parameters combination
that gave the best accuracy results for the chosen measure (on
average).






	
best_index

	dict of ints – Using an accuracy measure as key, get the index that can be used
with cv_results that achieved the highest accuracy for that
measure (on average).






	
cv_results

	dict of arrays – A dict that contains accuracy measures over all splits, as well as
train and test time for each parameter combination. Can be imported
into a pandas DataFrame (see example).






	
fit(data)

	Runs the fit() method of the algorithm for all parameter
combinations, over different splits given by the cv parameter.


	Parameters

	data (Dataset) – The dataset on
which to evaluate the algorithm, in parallel.










	
predict(*args)

	Call predict() on the estimator with the best found parameters
(according the the refit parameter). See AlgoBase.predict().

Only available if refit is not False.






	
test(testset, verbose=False)

	Call test() on the estimator with the best found parameters
(according the the refit parameter). See AlgoBase.test().

Only available if refit is not False.















          

      

      

    

  

    
      
          
            
  
similarities module

The similarities module includes tools to
compute similarity metrics between users or items. You may need to refer to the
Notation standards, References page. See also the
Similarity measure configuration section of the User Guide.

Available similarity measures:







	cosine

	Compute the cosine similarity between all pairs of users (or items).



	msd

	Compute the Mean Squared Difference similarity between all pairs of users (or items).



	pearson

	Compute the Pearson correlation coefficient between all pairs of users (or items).



	pearson_baseline

	Compute the (shrunk) Pearson correlation coefficient between all pairs of users (or items) using baselines for centering instead of means.







	
idly.similarities.cosine()

	Compute the cosine similarity between all pairs of users (or items).

Only common users (or items) are taken into account. The cosine
similarity is defined as:


\[\text{cosine_sim}(u, v) = \frac{
\sum\limits_{i \in I_{uv}} r_{ui} \cdot r_{vi}}
{\sqrt{\sum\limits_{i \in I_{uv}} r_{ui}^2} \cdot
\sqrt{\sum\limits_{i \in I_{uv}} r_{vi}^2}
}\]

or


\[\text{cosine_sim}(i, j) = \frac{
\sum\limits_{u \in U_{ij}} r_{ui} \cdot r_{uj}}
{\sqrt{\sum\limits_{u \in U_{ij}} r_{ui}^2} \cdot
\sqrt{\sum\limits_{u \in U_{ij}} r_{uj}^2}
}\]

depending on the user_based field of sim_options (see
Similarity measure configuration).

For details on cosine similarity, see on Wikipedia [https://en.wikipedia.org/wiki/Cosine_similarity#Definition].






	
idly.similarities.msd()

	Compute the Mean Squared Difference similarity between all pairs of
users (or items).

Only common users (or items) are taken into account. The Mean Squared
Difference is defined as:


\[\text{msd}(u, v) = \frac{1}{|I_{uv}|} \cdot
\sum\limits_{i \in I_{uv}} (r_{ui} - r_{vi})^2\]

or


\[\text{msd}(i, j) = \frac{1}{|U_{ij}|} \cdot
\sum\limits_{u \in U_{ij}} (r_{ui} - r_{uj})^2\]

depending on the user_based field of sim_options (see
Similarity measure configuration).

The MSD-similarity is then defined as:


\[\begin{split}\text{msd_sim}(u, v) &= \frac{1}{\text{msd}(u, v) + 1}\\
\text{msd_sim}(i, j) &= \frac{1}{\text{msd}(i, j) + 1}\end{split}\]

The \(+ 1\) term is just here to avoid dividing by zero.

For details on MSD, see third definition on Wikipedia [https://en.wikipedia.org/wiki/Root-mean-square_deviation#Formula].






	
idly.similarities.pearson()

	Compute the Pearson correlation coefficient between all pairs of users
(or items).

Only common users (or items) are taken into account. The Pearson
correlation coefficient can be seen as a mean-centered cosine similarity,
and is defined as:


\[\text{pearson_sim}(u, v) = \frac{ \sum\limits_{i \in I_{uv}}
(r_{ui} -  \mu_u) \cdot (r_{vi} - \mu_{v})} {\sqrt{\sum\limits_{i
\in I_{uv}} (r_{ui} -  \mu_u)^2} \cdot \sqrt{\sum\limits_{i \in
I_{uv}} (r_{vi} -  \mu_{v})^2} }\]

or


\[\text{pearson_sim}(i, j) = \frac{ \sum\limits_{u \in U_{ij}}
(r_{ui} -  \mu_i) \cdot (r_{uj} - \mu_{j})} {\sqrt{\sum\limits_{u
\in U_{ij}} (r_{ui} -  \mu_i)^2} \cdot \sqrt{\sum\limits_{u \in
U_{ij}} (r_{uj} -  \mu_{j})^2} }\]

depending on the user_based field of sim_options (see
Similarity measure configuration).

Note: if there are no common users or items, similarity will be 0 (and not
-1).

For details on Pearson coefficient, see Wikipedia [https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient#For_a_sample].






	
idly.similarities.pearson_baseline()

	Compute the (shrunk) Pearson correlation coefficient between all pairs
of users (or items) using baselines for centering instead of means.

The shrinkage parameter helps to avoid overfitting when only few ratings
are available (see Similarity measure configuration).

The Pearson-baseline correlation coefficient is defined as:


\[\text{pearson_baseline_sim}(u, v) = \hat{\rho}_{uv} = \frac{
    \sum\limits_{i \in I_{uv}} (r_{ui} -  b_{ui}) \cdot (r_{vi} -
    b_{vi})} {\sqrt{\sum\limits_{i \in I_{uv}} (r_{ui} -  b_{ui})^2}
    \cdot \sqrt{\sum\limits_{i \in I_{uv}} (r_{vi} -  b_{vi})^2}}\]

or


\[\text{pearson_baseline_sim}(i, j) = \hat{\rho}_{ij} = \frac{
    \sum\limits_{u \in U_{ij}} (r_{ui} -  b_{ui}) \cdot (r_{uj} -
    b_{uj})} {\sqrt{\sum\limits_{u \in U_{ij}} (r_{ui} -  b_{ui})^2}
    \cdot \sqrt{\sum\limits_{u \in U_{ij}} (r_{uj} -  b_{uj})^2}}\]

The shrunk Pearson-baseline correlation coefficient is then defined as:


\[ \begin{align}\begin{aligned}\text{pearson_baseline_shrunk_sim}(u, v) &= \frac{|I_{uv}| - 1}
{|I_{uv}| - 1 + \text{shrinkage}} \cdot \hat{\rho}_{uv}\\\text{pearson_baseline_shrunk_sim}(i, j) &= \frac{|U_{ij}| - 1}
{|U_{ij}| - 1 + \text{shrinkage}} \cdot \hat{\rho}_{ij}\end{aligned}\end{align} \]

Obviously, a shrinkage parameter of 0 amounts to no shrinkage at all.

Note: here again, if there are no common users/items, similarity will be 0
(and not -1).

Motivations for such a similarity measure can be found on the Recommender
System Handbook, section 5.4.1.









          

      

      

    

  

    
      
          
            
  
accuracy module

The surprise.accuracy module provides with tools for computing accuracy
metrics on a set of predictions.

Available accuracy metrics:







	rmse

	Compute RMSE (Root Mean Squared Error).



	mae

	Compute MAE (Mean Absolute Error).



	fcp

	Compute FCP (Fraction of Concordant Pairs).







	
idly.accuracy.fcp(predictions, verbose=True)

	Compute FCP (Fraction of Concordant Pairs).

Computed as described in paper Collaborative Filtering on Ordinal User
Feedback [http://www.ijcai.org/Proceedings/13/Papers/449.pdf] by Koren
and Sill, section 5.2.


	Parameters

	
	predictions (list of Prediction) – A list of predictions, as returned by the test() method.


	verbose – If True, will print computed value. Default is True.






	Returns

	The Fraction of Concordant Pairs.



	Raises

	ValueError – When predictions is empty.










	
idly.accuracy.mae(predictions, verbose=True)

	Compute MAE (Mean Absolute Error).


\[\text{MAE} = \frac{1}{|\hat{R}|} \sum_{\hat{r}_{ui} \in
\hat{R}}|r_{ui} - \hat{r}_{ui}|\]


	Parameters

	
	predictions (list of Prediction) – A list of predictions, as returned by the test() method.


	verbose – If True, will print computed value. Default is True.






	Returns

	The Mean Absolute Error of predictions.



	Raises

	ValueError – When predictions is empty.










	
idly.accuracy.rmse(predictions, verbose=True)

	Compute RMSE (Root Mean Squared Error).


\[\text{RMSE} = \sqrt{\frac{1}{|\hat{R}|} \sum_{\hat{r}_{ui} \in
\hat{R}}(r_{ui} - \hat{r}_{ui})^2}.\]


	Parameters

	
	predictions (list of Prediction) – A list of predictions, as returned by the test() method.


	verbose – If True, will print computed value. Default is True.






	Returns

	The Root Mean Squared Error of predictions.



	Raises

	ValueError – When predictions is empty.













          

      

      

    

  

    
      
          
            
  
dataset module

The dataset module defines the Dataset class
and other subclasses which are used for managing datasets.

Users may use both built-in and user-defined datasets (see the
Getting Started page for examples). Right now, three built-in datasets
are available:


	The movielens-100k [http://grouplens.org/datasets/movielens/] dataset.


	The movielens-1m [http://grouplens.org/datasets/movielens/] dataset.


	The Jester [http://eigentaste.berkeley.edu/dataset/] dataset 2.




Built-in datasets can all be loaded (or downloaded if you haven’t already)
using the Dataset.load_builtin() method.
Summary:







	Dataset.load_builtin

	Load a built-in dataset.



	Dataset.load_from_file

	Load a dataset from a (custom) file.



	Dataset.load_from_folds

	Load a dataset where folds (for cross-validation) are predefined by some files.



	Dataset.folds

	Generator function to iterate over the folds of the Dataset.



	DatasetAutoFolds.split

	Split the dataset into folds for future cross-validation.







	
class idly.dataset.Dataset(reader)

	Base class for loading datasets.

Note that you should never instantiate the Dataset class directly
(same goes for its derived classes), but instead use one of the three
available methods for loading datasets.


	
folds()

	Generator function to iterate over the folds of the Dataset.


Warning

Deprecated since version 1.05. Use cross-validation iterators instead. This method will be
removed in later versions.




	Yields

	tuple – Trainset and testset
of current fold.










	
classmethod load_builtin(name=u'ml-100k')

	Load a built-in dataset.

If the dataset has not already been loaded, it will be downloaded and
saved. You will have to split your dataset using the split method. See an example in the User
Guide.


	Parameters

	name (string) – The name of the built-in dataset to load.
Accepted values are ‘ml-100k’, ‘ml-1m’, and ‘jester’.
Default is ‘ml-100k’.



	Returns

	A Dataset object.



	Raises

	ValueError – If the name parameter is incorrect.










	
classmethod load_from_df(df, reader)

	Load a dataset from a pandas dataframe.

Use this if you want to use a custom dataset that is stored in a pandas
dataframe. See the User Guide for an
example.


	Parameters

	
	df (Dataframe) – The dataframe containing the ratings. It must have
three columns, corresponding to the user (raw) ids, the item
(raw) ids, and the ratings, in this order.


	reader (Reader) – A reader to read
the file. Only the rating_scale field needs to be
specified.













	
classmethod load_from_file(file_path, reader)

	Load a dataset from a (custom) file.

Use this if you want to use a custom dataset and all of the ratings are
stored in one file. You will have to split your dataset using the
split method. See an example in the
User Guide.


	Parameters

	
	file_path (string) – The path to the file containing ratings.


	reader (Reader) – A reader to read
the file.













	
classmethod load_from_folds(folds_files, reader)

	Load a dataset where folds (for cross-validation) are predefined by
some files.

The purpose of this method is to cover a common use case where a
dataset is already split into predefined folds, such as the
movielens-100k dataset which defines files u1.base, u1.test, u2.base,
u2.test, etc… It can also be used when you don’t want to perform
cross-validation but still want to specify your training and testing
data (which comes down to 1-fold cross-validation anyway). See an
example in the User Guide.


	Parameters

	
	folds_files (iterable of tuples) – The list of the
folds. A fold is a tuple of the form (path_to_train_file,
path_to_test_file).


	reader (Reader) – A reader to read
the files.

















	
class idly.dataset.DatasetAutoFolds(ratings_file=None, reader=None, df=None)

	A derived class from Dataset for which folds (for
cross-validation) are not predefined. (Or for when there are no folds at
all).


	
build_full_trainset()

	Do not split the dataset into folds and just return a trainset as
is, built from the whole dataset.

User can then query for predictions, as shown in the User Guide.


	Returns

	The Trainset.










	
split(n_folds=5, shuffle=True)

	Split the dataset into folds for future cross-validation.


Warning

Deprecated since version 1.05. Use cross-validation iterators instead. This method will be
removed in later versions.



If you forget to call split(), the dataset will be automatically
shuffled and split for 5-fold cross-validation.

You can obtain repeatable splits over your all your experiments by
seeding the RNG:

import random
random.seed(my_seed)  # call this before you call split!






	Parameters

	
	n_folds (int) – The number of folds.


	shuffle (bool) – Whether to shuffle ratings before splitting.
If False, folds will always be the same each time the
experiment is run. Default is True.




















          

      

      

    

  

    
      
          
            
  
Trainset class


	
class idly.Trainset(ur, ir, n_users, n_items, n_ratings, rating_scale, offset, raw2inner_id_users, raw2inner_id_items)

	A trainset contains all useful data that constitutes a training set.

It is used by the fit() method of every
prediction algorithm. You should not try to built such an object on your
own but rather use the Dataset.folds() method or the
DatasetAutoFolds.build_full_trainset() method.

Trainsets are different from Datasets.
You can think of a Datasets as the raw
data, and Trainsets as higher-level data where useful methods are defined.
Also, a Datasets may be comprised of
multiple Trainsets (e.g. when doing cross validation).


	
ur

	defaultdict of list – The users ratings. This is a
dictionary containing lists of tuples of the form (item_inner_id,
rating). The keys are user inner ids.






	
ir

	defaultdict of list – The items ratings. This is a
dictionary containing lists of tuples of the form (user_inner_id,
rating). The keys are item inner ids.






	
n_users

	Total number of users \(|U|\).






	
n_items

	Total number of items \(|I|\).






	
n_ratings

	Total number of ratings \(|R_{train}|\).






	
rating_scale

	tuple – The minimum and maximal rating of the rating
scale.






	
global_mean

	The mean of all ratings \(\mu\).






	
all_items()

	Generator function to iterate over all items.


	Yields

	Inner id of items.










	
all_ratings()

	Generator function to iterate over all ratings.


	Yields

	A tuple (uid, iid, rating) where ids are inner ids (see
this note).










	
all_users()

	Generator function to iterate over all users.


	Yields

	Inner id of users.










	
build_anti_testset(fill=None)

	Return a list of ratings that can be used as a testset in the
test()
method.

The ratings are all the ratings that are not in the trainset, i.e.
all the ratings \(r_{ui}\) where the user \(u\) is known, the
item \(i\) is known, but the rating \(r_{ui}\)  is not in the
trainset. As \(r_{ui}\) is unknown, it is either replaced by the
fill value or assumed to be equal to the mean of all ratings
global_mean.


	Parameters

	fill (float) – The value to fill unknown ratings. If None the
global mean of all ratings global_mean will be used.



	Returns

	A list of tuples (uid, iid, fill) where ids are raw ids.










	
build_testset()

	Return a list of ratings that can be used as a testset in the
test()
method.

The ratings are all the ratings that are in the trainset, i.e. all the
ratings returned by the all_ratings() generator. This is useful in
cases where you want to to test your algorithm on the trainset.






	
global_mean

	Return the mean of all ratings.

It’s only computed once.






	
knows_item(iid)

	Indicate if the item is part of the trainset.

An item is part of the trainset if the item was rated at least once.


	Parameters

	iid (int) – The (inner) item id. See this
note.



	Returns

	True if item is part of the trainset, else False.










	
knows_user(uid)

	Indicate if the user is part of the trainset.

A user is part of the trainset if the user has at least one rating.


	Parameters

	uid (int) – The (inner) user id. See this
note.



	Returns

	True if user is part of the trainset, else False.










	
to_inner_iid(riid)

	Convert an item raw id to an inner id.

See this note.


	Parameters

	riid (str) – The item raw id.



	Returns

	The item inner id.



	Return type

	int



	Raises

	ValueError – When item is not part of the trainset.










	
to_inner_uid(ruid)

	Convert a user raw id to an inner id.

See this note.


	Parameters

	ruid (str) – The user raw id.



	Returns

	The user inner id.



	Return type

	int



	Raises

	ValueError – When user is not part of the trainset.










	
to_raw_iid(iiid)

	Convert an item inner id to a raw id.

See this note.


	Parameters

	iiid (int) – The item inner id.



	Returns

	The item raw id.



	Return type

	str



	Raises

	ValueError – When iiid is not an inner id.










	
to_raw_uid(iuid)

	Convert a user inner id to a raw id.

See this note.


	Parameters

	iuid (int) – The user inner id.



	Returns

	The user raw id.



	Return type

	str



	Raises

	ValueError – When iuid is not an inner id.

















          

      

      

    

  

    
      
          
            
  
Reader class


	
class idly.reader.Reader(name=None, line_format=u'user item rating', sep=None, rating_scale=(1, 5), skip_lines=0)

	The Reader class is used to parse a file containing ratings.

Such a file is assumed to specify only one rating per line, and each line
needs to respect the following structure:

user ; item ; rating ; [timestamp]





where the order of the fields and the separator (here ‘;’) may be
arbitrarily defined (see below).  brackets indicate that the timestamp
field is optional.

For each built-in dataset, Surprise also provides predefined readers which
are useful if you want to use a custom dataset that has the same format as
a built-in one (see the name parameter).


	Parameters

	
	name (string, optional) – If specified, a Reader for one of the
built-in datasets is returned and any other parameter is ignored.
Accepted values are ‘ml-100k’, ‘ml-1m’, and ‘jester’. Default
is None.


	line_format (string) – The fields names, in the order at which
they are encountered on a line. Please note that line_format is
always space-separated (use the sep parameter). Default is
'user item rating'.


	sep (char) – the separator between fields. Example : ';'.


	rating_scale (tuple, optional) – The rating scale used for every
rating.  Default is (1, 5).


	skip_lines (int, optional) – Number of lines to skip at the
beginning of the file. Default is 0.
















          

      

      

    

  

    
      
          
            
  
evaluate module

The evaluate module defines the evaluate()
function and GridSearch class


	
class idly.evaluate.GridSearch(algo_class, param_grid, measures=[u'rmse', u'mae'], n_jobs=1, pre_dispatch=u'2*n_jobs', seed=None, verbose=1, joblib_verbose=0)

	
Warning

Deprecated since version 1.05. Use GridSearchCV instead. This
class will be removed in later versions.



The GridSearch class, used to evaluate the performance of an
algorithm on various combinations of parameters, and extract the best
combination. It is analogous to GridSearchCV [http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html] from scikit-learn.

See User Guide for usage.


	Parameters

	
	algo_class (AlgoBase) – The class
object of the algorithm to evaluate.


	param_grid (dict) – Dictionary with algorithm parameters as keys and
list of values as keys. All combinations will be evaluated with
desired algorithm. Dict parameters such as sim_options require
special treatment, see this note.


	measures (list of string) – The performance measures to compute. Allowed
names are function names as defined in the accuracy module.  Default is ['rmse', 'mae'].


	n_jobs (int) – The maximum number of algorithm training in parallel.


	If -1, all CPUs are used.


	If 1 is given, no parallel computing code is used at all,                which is useful for debugging.


	For n_jobs below -1, (n_cpus + n_jobs + 1) are                used.  For example, with n_jobs = -2 all CPUs but one are                used.




Default is 1.




	pre_dispatch (int or string) – Controls the number of jobs that get
dispatched during parallel execution. Reducing this number can be
useful to avoid an explosion of memory consumption when more jobs
get dispatched than CPUs can process. This parameter can be:


	None, in which case all the jobs are immediately created                and spawned. Use this for lightweight and fast-running                jobs, to avoid delays due to on-demand spawning of the                jobs.


	An int, giving the exact number of total jobs that are                spawned.


	A string, giving an expression as a function of n_jobs,                as in '2*n_jobs'.




Default is '2*n_jobs'.




	seed (int) – The value to use as seed for RNG. It will determine how
splits are defined. If None, the current time since epoch is
used. Default is None.


	verbose (bool) – Level of verbosity. If False, nothing is printed. If
True, The mean values of each measure are printed along for
each parameter combination. Default is True.


	joblib_verbose (int) – Controls the verbosity of joblib: the higher, the
more messages.









	
cv_results

	dict of arrays – A dict that contains all parameters and accuracy information for
each combination. Can  be imported into a pandas DataFrame.






	
best_estimator

	dict of AlgoBase – Using an accuracy measure as key, get the estimator that gave the
best accuracy results for the chosen measure.






	
best_score

	dict of floats – Using an accuracy measure as key, get the best score achieved for
that measure.






	
best_params

	dict of dicts – Using an accuracy measure as key, get the parameters combination
that gave the best accuracy results for the chosen measure.






	
best_index

	dict of ints – Using an accuracy measure as key, get the index that can be used
with cv_results that achieved the highest accuracy for that
measure.






	
evaluate(data)

	Runs the grid search on dataset.

Class instance attributes can be accessed after the evaluate is done.


	Parameters

	data (Dataset) – The dataset on
which to evaluate the algorithm.














	
idly.evaluate.evaluate(algo, data, measures=[u'rmse', u'mae'], with_dump=False, dump_dir=None, verbose=1)

	
Warning

Deprecated since version 1.05.  Use cross_validate instead. This
function will be removed in later versions.



Evaluate the performance of the algorithm on given data.

Depending on the nature of the data parameter, it may or may not
perform cross validation.


	Parameters

	
	algo (AlgoBase) – The algorithm to evaluate.


	data (Dataset) – The dataset on which
to evaluate the algorithm.


	measures (list of string) – The performance measures to compute. Allowed
names are function names as defined in the accuracy module. Default is ['rmse', 'mae'].


	with_dump (bool) – If True, the predictions and the algorithm will be
dumped for later further analysis at each fold (see FAQ). The file names will be set as:
'<date>-<algorithm name>-<fold number>'.  Default is False.


	dump_dir (str) – The directory where to dump to files. Default is
'~/.surprise_data/dumps/', or the folder specified by the
'SURPRISE_DATA_FOLDER' environment variable (see FAQ).


	verbose (int) – Level of verbosity. If 0, nothing is printed. If 1
(default), accuracy measures for each folds are printed, with a
final summary. If 2, every prediction is printed.






	Returns

	A dictionary containing measures as keys and lists as values. Each list
contains one entry per fold.













          

      

      

    

  

    
      
          
            
  
dump module

The dump module defines the dump() function.


	
idly.dump.dump(file_name, predictions=None, algo=None, verbose=0)

	A basic wrapper around Pickle to serialize a list of prediction and/or
an algorithm on drive.

What is dumped is a dictionary with keys 'predictions' and 'algo'.


	Parameters

	
	file_name (str) – The name (with full path) specifying where to dump the
predictions.


	predictions (list of Prediction) – The
predictions to dump.


	algo (Algorithm, optional) – The algorithm to dump.


	verbose (int) – Level of verbosity. If 1, then a message indicates
that the dumping went successfully. Default is 0.













	
idly.dump.load(file_name)

	A basic wrapper around Pickle to deserialize a list of prediction and/or
an algorithm that were dumped on drive using dump().


	Parameters

	file_name (str) – The path of the file from which the algorithm is
to be loaded



	Returns

	A tuple (predictions, algo) where predictions is a list of
Prediction objects and
algo is an Algorithm object. Depending
on what was dumped, some of these may be None.
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