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idly a collection of interpretable algorithms realized via DNN architectures

If you’re new to idly, we invite you to take a look at the Getting Started guide, where you’ll find a
series of tutorials illustrating all you can do with idly. You can also check out the FAQ for many
use-case example.

Any kind of feedback/criticism would be greatly appreciated (software design, documentation,
improvement ideas, spelling mistakes, etc. . . ). Please feel free to contribute and send pull requests
(see GitHub page)!

User Guide 1
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CHAPTER 1

Getting Started

1.1 Basic usage

1.1.1 Automatic cross-validation

Surprise has a set of built-in algorithms and datasets for you to play with. In its simplest form, it
only takes a few lines of code to run a cross-validation procedure:

Listing 1.1: From file examples/basic_usage.py

from surprise import SVD
from surprise import Dataset
from surprise.model_selection import cross_validate

# Load the movielens-100k dataset (download it if needed),
data = Dataset.load_builtin('ml-100k')

# We'll use the famous SVD algorithm.
algo = SVD()

# Run 5-fold cross-validation and print results
cross_validate(algo, data, measures=['RMSE', 'MAE'], cv=5,
→˓verbose=True)

The result should be as follows (actual values may vary due to randomization):

3
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Evaluating RMSE, MAE of algorithm SVD on 5 split(s).

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std
RMSE 0.9311 0.9370 0.9320 0.9317 0.9391 0.9342 0.0032
MAE 0.7350 0.7375 0.7341 0.7342 0.7375 0.7357 0.0015
Fit time 6.53 7.11 7.23 7.15 3.99 6.40 1.23
Test time 0.26 0.26 0.25 0.15 0.13 0.21 0.06

The load_builtin() method will offer to download the movielens-100k dataset if it has not
already been downloaded, and it will save it in the .idly_data folder in your home directory
(you can also choose to save it somewhere else).

We are here using the well-known SVD algorithm, but many other algorithms are available. See
Using prediction algorithms for more details.

The cross_validate() function runs a cross-validation procedure according to the cv ar-
gument, and computes some accuracy measures. We are here using a classical 5-fold cross-
validation, but fancier iterators can be used (see here).

1.1.2 Train-test split and the fit() method

If you don’t want to run a full cross-validation procedure, you can use the
train_test_split() to sample a trainset and a testset with given sizes, and use the
accuracy metric of your chosing. You’ll need to use the fit() method which will train the
algorithm on the trainset, and the test() method which will return the predictions made from
the testset:

Listing 1.2: From file examples/train_test_split.py

from surprise import SVD
from surprise import Dataset
from surprise import accuracy
from surprise.model_selection import train_test_split

# Load the movielens-100k dataset (download it if needed),
data = Dataset.load_builtin('ml-100k')

# sample random trainset and testset
# test set is made of 25% of the ratings.
trainset, testset = train_test_split(data, test_size=.25)

# We'll use the famous SVD algorithm.
algo = SVD()

# Train the algorithm on the trainset, and predict ratings for the
→˓testset

4 Chapter 1. Getting Started
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algo.fit(trainset)
predictions = algo.test(testset)

# Then compute RMSE
accuracy.rmse(predictions)

Result:

RMSE: 0.9411

Note that you can train and test an algorithm with the following one-line:

predictions = algo.fit(trainset).test(testset)

In some cases, your trainset and testset are already defined by some files. Please refer to this
section to handle such cases.

1.1.3 Train on a whole trainset and the predict() method

Obviously, we could also simply fit our algorithm to the whole dataset, rather than running cross-
validation. This can be done by using the build_full_trainset() method which will build
a trainset object:

Listing 1.3: From file examples/predict_ratings.py

from surprise import KNNBasic
from surprise import Dataset

# Load the movielens-100k dataset
data = Dataset.load_builtin('ml-100k')

# Retrieve the trainset.
trainset = data.build_full_trainset()

# Build an algorithm, and train it.
algo = KNNBasic()
algo.fit(trainset)

We can now predict ratings by directly calling the predict()method. Let’s say you’re interested
in user 196 and item 302 (make sure they’re in the trainset!), and you know that the true rating
𝑟𝑢𝑖 = 4:

Listing 1.4: From file examples/predict_ratings.py

uid = str(196) # raw user id (as in the ratings file). They are
→˓**strings**!

1.1. Basic usage 5
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iid = str(302) # raw item id (as in the ratings file). They are
→˓**strings**!

# get a prediction for specific users and items.
pred = algo.predict(uid, iid, r_ui=4, verbose=True)

The result should be:

user: 196 item: 302 r_ui = 4.00 est = 4.06 {'actual_k
→˓': 40, 'was_impossible': False}

Note: The predict() uses raw ids (please read this about raw and inner ids). As the dataset
we have used has been read from a file, the raw ids are strings (even if they represent numbers).

We have so far used a built-in dataset, but you can of course use your own. This is explained in the
next section.

1.2 Use a custom dataset

Surprise has a set of builtin datasets, but you can of course use a custom dataset. Loading a rating
dataset can be done either from a file (e.g. a csv file), or from a pandas dataframe. Either way, you
will need to define a Reader object for idly to be able to parse the file or the dataframe.

• To load a dataset from a file (e.g. a csv file), you will need the load_from_file()
method:

Listing 1.5: From file examples/load_custom_dataset.py

from surprise import BaselineOnly
from surprise import Dataset
from surprise import Reader
from surprise.model_selection import cross_validate

# path to dataset file
file_path = os.path.expanduser('~/.surprise_data/ml-100k/ml-100k/u.
→˓data')

# As we're loading a custom dataset, we need to define a reader.
→˓In the
# movielens-100k dataset, each line has the following format:
# 'user item rating timestamp', separated by '\t' characters.
reader = Reader(line_format='user item rating timestamp', sep='\t')

data = Dataset.load_from_file(file_path, reader=reader)

6 Chapter 1. Getting Started
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# We can now use this dataset as we please, e.g. calling cross_
→˓validate
cross_validate(BaselineOnly(), data, verbose=True)

For more details about readers and how to use them, see the Reader class documenta-
tion.

Note: As you already know from the previous section, the Movielens-100k dataset
is built-in so a much quicker way to load the dataset is to do data = Dataset.
load_builtin('ml-100k'). We will of course ignore this here.

• To load a dataset from a pandas dataframe, you will need the load_from_df() method.
You will also need a Reader object, but only the rating_scale parameter must be
specified. The dataframe must have three columns, corresponding to the user (raw) ids, the
item (raw) ids, and the ratings in this order. Each row thus corresponds to a given rating.
This is not restrictive as you can reorder the columns of your dataframe easily.

Listing 1.6: From file examples/load_from_dataframe.py

import pandas as pd

from surprise import NormalPredictor
from surprise import Dataset
from surprise import Reader
from surprise.model_selection import cross_validate

# Creation of the dataframe. Column names are irrelevant.
ratings_dict = {'itemID': [1, 1, 1, 2, 2],

'userID': [9, 32, 2, 45, 'user_foo'],
'rating': [3, 2, 4, 3, 1]}

df = pd.DataFrame(ratings_dict)

# A reader is still needed but only the rating_scale param is
→˓requiered.
reader = Reader(rating_scale=(1, 5))

# The columns must correspond to user id, item id and ratings (in
→˓that order).
data = Dataset.load_from_df(df[['userID', 'itemID', 'rating']],
→˓reader)

# We can now use this dataset as we please, e.g. calling cross_
→˓validate

1.2. Use a custom dataset 7
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cross_validate(NormalPredictor(), data, cv=2)

The dataframe initially looks like this:

itemID rating userID
0 1 3 9
1 1 2 32
2 1 4 2
3 2 3 45
4 2 1 user_foo

1.3 Use cross-validation iterators

For cross-validation, we can use the cross_validate() function that does all the hard work
for us. But for a better control, we can also instanciate a cross-validation iterator, and make pre-
dictions over each split using the split() method of the iterator, and the test() method of the
algorithm. Here is an example where we use a classical K-fold cross-validation procedure with 3
splits:

Listing 1.7: From file examples/use_cross_validation_iterators.py

from surprise import SVD
from surprise import Dataset
from surprise import accuracy
from surprise.model_selection import KFold

# Load the movielens-100k dataset
data = Dataset.load_builtin('ml-100k')

# define a cross-validation iterator
kf = KFold(n_splits=3)

algo = SVD()

for trainset, testset in kf.split(data):

# train and test algorithm.
algo.fit(trainset)
predictions = algo.test(testset)

# Compute and print Root Mean Squared Error
accuracy.rmse(predictions, verbose=True)

Result could be, e.g.:

8 Chapter 1. Getting Started
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RMSE: 0.9374
RMSE: 0.9476
RMSE: 0.9478

Other cross-validation iterator can be used, like LeaveOneOut or ShuffleSplit. See all the available
iterators here. The design of idly’s cross-validation tools is heavily inspired from the excellent
scikit-learn API.

A special case of cross-validation is when the folds are already predefined by some files. For
instance, the movielens-100K dataset already provides 5 train and test files (u1.base, u1.test . . .
u5.base, u5.test). idly can handle this case by using a idly.model_selection.split.
PredefinedKFold object:

Listing 1.8: From file examples/load_custom_dataset_predefined_folds.py

from surprise import SVD
from surprise import Dataset
from surprise import Reader
from surprise import accuracy
from surprise.model_selection import PredefinedKFold

# path to dataset folder
files_dir = os.path.expanduser('~/.surprise_data/ml-100k/ml-100k/')

# This time, we'll use the built-in reader.
reader = Reader('ml-100k')

# folds_files is a list of tuples containing file paths:
# [(u1.base, u1.test), (u2.base, u2.test), ... (u5.base, u5.test)]
train_file = files_dir + 'u%d.base'
test_file = files_dir + 'u%d.test'
folds_files = [(train_file % i, test_file % i) for i in (1, 2, 3, 4,
→˓5)]

data = Dataset.load_from_folds(folds_files, reader=reader)
pkf = PredefinedKFold()

algo = SVD()

for trainset, testset in pkf.split(data):

# train and test algorithm.
algo.fit(trainset)
predictions = algo.test(testset)

# Compute and print Root Mean Squared Error

1.3. Use cross-validation iterators 9
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accuracy.rmse(predictions, verbose=True)

Of course, nothing prevents you from only loading a single file for training and a single file for
testing. However, the folds_files parameter still needs to be a list.

1.4 Tune algorithm parameters with GridSearchCV

The cross_validate() function reports accuracy metric over a cross-validation procedure
for a given set of parameters. If you want to know which parameter combination yields the best
results, the GridSearchCV class comes to the rescue. Given a dict of parameters, this class
exhaustively tries all the combinations of parameters and reports the best parameters for any ac-
curacy measure (averaged over the different splits). It is heavily inspired from scikit-learn’s Grid-
SearchCV.

Here is an example where we try different values for parameters n_epochs, lr_all and
reg_all of the SVD algorithm.

Listing 1.9: From file examples/grid_search_usage.py

from surprise import SVD
from surprise import Dataset
from surprise.model_selection import GridSearchCV

# Use movielens-100K
data = Dataset.load_builtin('ml-100k')

param_grid = {'n_epochs': [5, 10], 'lr_all': [0.002, 0.005],
'reg_all': [0.4, 0.6]}

gs = GridSearchCV(SVD, param_grid, measures=['rmse', 'mae'], cv=3)

gs.fit(data)

# best RMSE score
print(gs.best_score['rmse'])

# combination of parameters that gave the best RMSE score
print(gs.best_params['rmse'])

Result:

0.961300130118
{'n_epochs': 10, 'lr_all': 0.005, 'reg_all': 0.4}

We are here evaluating the average RMSE and MAE over a 3-fold cross-validation procedure, but
any cross-validation iterator can used.

10 Chapter 1. Getting Started
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Once fit() has been called, the best_estimator attribute gives us an algorithm instance
with the optimal set of parameters, which can be used how we please:

Listing 1.10: From file examples/grid_search_usage.py

# We can now use the algorithm that yields the best rmse:
algo = gs.best_estimator['rmse']
algo.fit(data.build_full_trainset())

Note: Dictionary parameters such as bsl_options and sim_options require particular
treatment. See usage example below:

param_grid = {'k': [10, 20],
'sim_options': {'name': ['msd', 'cosine'],

'min_support': [1, 5],
'user_based': [False]}

}

Naturally, both can be combined, for example for the KNNBaseline algorithm:

param_grid = {'bsl_options': {'method': ['als', 'sgd'],
'reg': [1, 2]},

'k': [2, 3],
'sim_options': {'name': ['msd', 'cosine'],

'min_support': [1, 5],
'user_based': [False]}

}

For further analysis, the cv_results attribute has all the needed information and can be im-
ported in a pandas dataframe:

Listing 1.11: From file examples/grid_search_usage.py

results_df = pd.DataFrame.from_dict(gs.cv_results)

In our example, the cv_results attribute looks like this (floats are formatted):

'split0_test_rmse': [1.0, 1.0, 0.97, 0.98, 0.98, 0.99, 0.96, 0.97]
'split1_test_rmse': [1.0, 1.0, 0.97, 0.98, 0.98, 0.99, 0.96, 0.97]
'split2_test_rmse': [1.0, 1.0, 0.97, 0.98, 0.98, 0.99, 0.96, 0.97]
'mean_test_rmse': [1.0, 1.0, 0.97, 0.98, 0.98, 0.99, 0.96, 0.97]
'std_test_rmse': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
'rank_test_rmse': [7 8 3 5 4 6 1 2]
'split0_test_mae': [0.81, 0.82, 0.78, 0.79, 0.79, 0.8, 0.77, 0.79]
'split1_test_mae': [0.8, 0.81, 0.78, 0.79, 0.78, 0.79, 0.77, 0.78]
'split2_test_mae': [0.81, 0.81, 0.78, 0.79, 0.78, 0.8, 0.77, 0.78]

1.4. Tune algorithm parameters with GridSearchCV 11
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'mean_test_mae': [0.81, 0.81, 0.78, 0.79, 0.79, 0.8, 0.77, 0.78]
'std_test_mae': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
'rank_test_mae': [7 8 2 5 4 6 1 3]
'mean_fit_time': [1.53, 1.52, 1.53, 1.53, 3.04, 3.05, 3.06, 3.02]
'std_fit_time': [0.03, 0.04, 0.0, 0.01, 0.04, 0.01, 0.06, 0.01]
'mean_test_time': [0.46, 0.45, 0.44, 0.44, 0.47, 0.49, 0.46, 0.34]
'std_test_time': [0.0, 0.01, 0.01, 0.0, 0.03, 0.06, 0.01, 0.08]
'params': [{'n_epochs': 5, 'lr_all': 0.002, 'reg_all': 0.4},
→˓{'n_epochs': 5, 'lr_all': 0.002, 'reg_all': 0.6}, {'n_epochs': 5,
→˓'lr_all': 0.005, 'reg_all': 0.4}, {'n_epochs': 5, 'lr_all': 0.005,
→˓'reg_all': 0.6}, {'n_epochs': 10, 'lr_all': 0.002, 'reg_all': 0.4}, {
→˓'n_epochs': 10, 'lr_all': 0.002, 'reg_all': 0.6}, {'n_epochs': 10,
→˓'lr_all': 0.005, 'reg_all': 0.4}, {'n_epochs': 10, 'lr_all': 0.005,
→˓'reg_all': 0.6}]
'param_n_epochs': [5, 5, 5, 5, 10, 10, 10, 10]
'param_lr_all': [0.0, 0.0, 0.01, 0.01, 0.0, 0.0, 0.01, 0.01]
'param_reg_all': [0.4, 0.6, 0.4, 0.6, 0.4, 0.6, 0.4, 0.6]

As you can see, each list has the same size of the number of parameter combination. It corresponds
to the following table:

12 Chapter 1. Getting Started
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split0_test_rmsesplit1_test_rmsesplit2_test_rmsemean_test_rmsestd_test_rmserank_test_rmsesplit0_test_maesplit1_test_maesplit2_test_maemean_test_maestd_test_maerank_test_maemean_fit_timestd_fit_timemean_test_timestd_test_timeparamsparam_n_epochsparam_lr_allparam_reg_all
0.997750.9977440.9963780.9972910.0006455087 0.8078620.8046260.8052820.8059230.001396577 1.533410.03052160.4558310.000922113{‘n_epochs’:

5,
‘lr_all’:
0.002,
‘reg_all’:
0.4}

5 0.0020.4

1.003811.003041.002571.003140.0005083588 0.8165590.8129050.8137720.8144120.001558668 1.51990.03671170.4510680.00938646{‘n_epochs’:
5,
‘lr_all’:
0.002,
‘reg_all’:
0.6}

5 0.0020.6

0.9735240.9735950.9724950.9732050.0005026093 0.7833610.7802420.780670.7814240.001380492 1.534490.004962030.4415580.00529696{‘n_epochs’:
5,
‘lr_all’:
0.005,
‘reg_all’:
0.4}

5 0.0050.4

0.982290.9820590.9814860.9819450.0003380565 0.7944810.7907810.791860.7923740.001553775 1.527390.008591850.444630.000888907{‘n_epochs’:
5,
‘lr_all’:
0.005,
‘reg_all’:
0.6}

5 0.0050.6

0.9780340.9784070.9769190.9777870.0006320494 0.7876430.7847230.7849570.7857740.001324864 3.035720.04311010.4666060.0254965{‘n_epochs’:
10,
‘lr_all’:
0.002,
‘reg_all’:
0.4}

10 0.0020.4

0.9862630.9858170.9850040.9856950.0005208996 0.7982180.7944570.7953730.7960160.001601356 3.05440.006361850.4883570.0576194{‘n_epochs’:
10,
‘lr_all’:
0.002,
‘reg_all’:
0.6}

10 0.0020.6

0.9637510.9634630.9626760.9632970.0004546611 0.7740360.7705480.7715880.7720570.001462011 3.06360.05979820.4564840.00510321{‘n_epochs’:
10,
‘lr_all’:
0.005,
‘reg_all’:
0.4}

10 0.0050.4

0.9736050.9728680.9727650.9730790.0003742222 0.786070.7819180.7835370.7838420.001708553 3.019070.0118340.3388390.075346{‘n_epochs’:
10,
‘lr_all’:
0.005,
‘reg_all’:
0.6}

10 0.0050.6

1.4. Tune algorithm parameters with GridSearchCV 13
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1.5 Command line usage

idly can also be used from the command line, for example:

idly -algo SVD -params "{'n_epochs': 5, 'verbose': True}" -load-
→˓builtin ml-100k -n-folds 3

See detailed usage by running:

idly -h

14 Chapter 1. Getting Started
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Using prediction algorithms

idly provides a bunch of built-in algorithms. All algorithms derive from the AlgoBase base class,
where are implemented some key methods (e.g. predict, fit and test). The list and details
of the available prediction algorithms can be found in the prediction_algorithms package
documentation.

Every algorithm is part of the global idly namespace, so you only need to import their names from
the idly package, for example:

from idly import KNNBasic
algo = KNNBasic()

Some of these algorithms may use baseline estimates, some may use a similarity measure. We will
here review how to configure the way baselines and similarities are computed.

2.1 Baselines estimates configuration

Note: This section only applies to algorithms (or similarity measures) that try to minimize the
following regularized squared error (or equivalent):∑︁

𝑟𝑢𝑖∈𝑅𝑡𝑟𝑎𝑖𝑛

(𝑟𝑢𝑖 − (𝜇+ 𝑏𝑢 + 𝑏𝑖))
2 + 𝜆

(︀
𝑏2𝑢 + 𝑏2𝑖

)︀
.

For algorithms using baselines in another objective function (e.g. the SVD algorithm), the base-
line configuration is done differently and is specific to each algorithm. Please refer to their own
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documentation.

First of all, if you do not want to configure the way baselines are computed, you don’t have to: the
default parameters will do just fine. If you do want to well. . . This is for you.

You may want to read section 2.1 of [Kor10] to get a good idea of what are baseline estimates.

Baselines can be estimated in two different ways:

• Using Stochastic Gradient Descent (SGD).

• Using Alternating Least Squares (ALS).

You can configure the way baselines are computed using the bsl_options parameter passed
at the creation of an algorithm. This parameter is a dictionary for which the key 'method'
indicates the method to use. Accepted values are 'als' (default) and 'sgd'. Depending on its
value, other options may be set. For ALS:

• 'reg_i': The regularization parameter for items. Corresponding to 𝜆2 in [Kor10]. Default
is 10.

• 'reg_u': The regularization parameter for users. Corresponding to 𝜆3 in [Kor10]. Default
is 15.

• 'n_epochs': The number of iteration of the ALS procedure. Default is 10. Note that in
[Kor10], what is described is a single iteration ALS process.

And for SGD:

• 'reg': The regularization parameter of the cost function that is optimized, corresponding
to 𝜆1 and then 𝜆5 in [Kor10] Default is 0.02.

• 'learning_rate': The learning rate of SGD, corresponding to 𝛾 in [Kor10]. Default is
0.005.

• 'n_epochs': The number of iteration of the SGD procedure. Default is 20.

Note: For both procedures (ALS and SGD), user and item biases (𝑏𝑢 and 𝑏𝑖) are initialized to zero.

Usage examples:

Listing 2.1: From file examples/baselines_conf.py

print('Using ALS')
bsl_options = {'method': 'als',

'n_epochs': 5,
'reg_u': 12,
'reg_i': 5
}

algo = BaselineOnly(bsl_options=bsl_options)
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Listing 2.2: From file examples/baselines_conf.py

print('Using SGD')
bsl_options = {'method': 'sgd',

'learning_rate': .00005,
}

algo = BaselineOnly(bsl_options=bsl_options)

Note that some similarity measures may use baselines, such as the pearson_baseline simi-
larity. Configuration works just the same, whether the baselines are used in the actual prediction
𝑟𝑢𝑖 or not:

Listing 2.3: From file examples/baselines_conf.py

bsl_options = {'method': 'als',
'n_epochs': 20,
}

sim_options = {'name': 'pearson_baseline'}
algo = KNNBasic(bsl_options=bsl_options, sim_options=sim_options)

This leads us to similarity measure configuration, which we will review right now.

2.2 Similarity measure configuration

Many algorithms use a similarity measure to estimate a rating. The way they can be configured is
done in a similar fashion as for baseline ratings: you just need to pass a sim_options argument
at the creation of an algorithm. This argument is a dictionary with the following (all optional) keys:

• 'name': The name of the similarity to use, as defined in the similarities module.
Default is 'MSD'.

• 'user_based': Whether similarities will be computed between users or between items.
This has a huge impact on the performance of a prediction algorithm. Default is True.

• 'min_support': The minimum number of common items (when 'user_based' is
'True') or minimum number of common users (when 'user_based' is 'False') for the
similarity not to be zero. Simply put, if |𝐼𝑢𝑣| <

Usage examples:

Listing 2.4: From file examples/similarity_conf.py

• sim_options = {'name': 'cosine',
'user_based': False # compute similarities between

→˓items
}

algo = KNNBasic(sim_options=sim_options)

2.2. Similarity measure configuration 17
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Listing 2.5: From file examples/similarity_conf.py

sim_options = {'name': 'pearson_baseline',
'shrinkage': 0 # no shrinkage
}

algo = KNNBasic(sim_options=sim_options)

See also:

The similarities module.
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How to build your own prediction algorithm

This page describes how to build a custom prediction algorithm using idly.

3.1 The basics

Want to get your hands dirty? Cool.

Creating your own prediction algorithm is pretty simple: an algorithm is nothing but a class de-
rived from AlgoBase that has an estimate method. This is the method that is called by the
predict() method. It takes in an inner user id, an inner item id (see this note), and returns the
estimated rating 𝑟𝑢𝑖:

Listing 3.1: From file examples/building_custom_algorithms/
most_basic_algorithm.py

from surprise import AlgoBase
from surprise import Dataset
from surprise.model_selection import cross_validate

class MyOwnAlgorithm(AlgoBase):

def __init__(self):

# Always call base method before doing anything.
AlgoBase.__init__(self)
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def estimate(self, u, i):

return 3

data = Dataset.load_builtin('ml-100k')
algo = MyOwnAlgorithm()

cross_validate(algo, data, verbose=True)

This algorithm is the dumbest we could have thought of: it just predicts a rating of 3, regardless of
users and items.

If you want to store additional information about the prediction, you can also return a dictionary
with given details:

def estimate(self, u, i):

details = {'info1' : 'That was',
'info2' : 'easy stuff :)'}

return 3, details

This dictionary will be stored in the prediction as the details field and can be used for later
analysis.

3.2 The fit method

Now, let’s make a slightly cleverer algorithm that predicts the average of all the ratings of the
trainset. As this is a constant value that does not depend on current user or item, we would rather
compute it once and for all. This can be done by defining the fit method:

Listing 3.2: From file examples/building_custom_algorithms/
most_basic_algorithm2.py

class MyOwnAlgorithm(AlgoBase):

def __init__(self):

# Always call base method before doing anything.
AlgoBase.__init__(self)

def fit(self, trainset):

# Here again: call base method before doing anything.
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AlgoBase.fit(self, trainset)

# Compute the average rating. We might as well use the
# trainset.global_mean attribute ;)
self.the_mean = np.mean([r for (_, _, r) in

self.trainset.all_ratings()])

return self

def estimate(self, u, i):

return self.the_mean

The fit method is called e.g. by the cross_validate function at each fold of a cross-
validation process, (but you can also call it yourself ). Before doing anything, you should call
the base class fit() method.

Note that the fit() method returns self. This allows to use expression like algo.
fit(trainset).test(testset).

3.3 The trainset attribute

Once the base class fit() method has returned, all the info you need about the current training
set (rating values, etc. . . ) is stored in the self.trainset attribute. This is a Trainset object
that has many attributes and methods of interest for prediction.

To illustrate its usage, let’s make an algorithm that predicts an average between the mean of all
ratings, the mean rating of the user and the mean rating for the item:

Listing 3.3: From file examples/building_custom_algorithms/
mean_rating_user_item.py

def estimate(self, u, i):

sum_means = self.trainset.global_mean
div = 1

if self.trainset.knows_user(u):
sum_means += np.mean([r for (_, r) in self.trainset.ur[u]])
div += 1

if self.trainset.knows_item(i):
sum_means += np.mean([r for (_, r) in self.trainset.ir[i]])
div += 1

return sum_means / div
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Note that it would have been a better idea to compute all the user means in the fit method, thus
avoiding the same computations multiple times.

3.4 When the prediction is impossible

It’s up to your algorithm to decide if it can or cannot yield a prediction. If the prediction is
impossible, then you can raise the PredictionImpossible exception. You’ll need to import
it first:

from idly import PredictionImpossible

This exception will be caught by the predict() method, and the estimation 𝑟𝑢𝑖 will be set
according to the default_prediction() method, which can be overridden. By default, it
returns the average of all ratings in the trainset.

3.5 Using similarities and baselines

Should your algorithm use a similarity measure or baseline estimates, you’ll need to accept
bsl_options and sim_options as parameters to the __init__ method, and pass them
along to the Base class. See how to use these parameters in the Using prediction algorithms sec-
tion.

Methods compute_baselines() and compute_similarities() can be called in the
fit method (or anywhere else).

Listing 3.4: From file examples/building_custom_algorithms/.
with_baselines_or_sim.py

class MyOwnAlgorithm(AlgoBase):

def __init__(self, sim_options={}, bsl_options={}):

AlgoBase.__init__(self, sim_options=sim_options,
bsl_options=bsl_options)

def fit(self, trainset):

AlgoBase.fit(self, trainset)

# Compute baselines and similarities
self.bu, self.bi = self.compute_baselines()
self.sim = self.compute_similarities()

return self
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def estimate(self, u, i):

if not (self.trainset.knows_user(u) and self.trainset.knows_
→˓item(i)):

raise PredictionImpossible('User and/or item is unkown.')

# Compute similarities between u and v, where v describes all
→˓other

# users that have also rated item i.
neighbors = [(v, self.sim[u, v]) for (v, r) in self.trainset.

→˓ir[i]]
# Sort these neighbors by similarity
neighbors = sorted(neighbors, key=lambda x: x[1], reverse=True)

print('The 3 nearest neighbors of user', str(u), 'are:')
for v, sim_uv in neighbors[:3]:

print('user {0:} with sim {1:1.2f}'.format(v, sim_uv))

# ... Aaaaand return the baseline estimate anyway ;)

Feel free to explore the prediction_algorithms package source to get an idea of what can be done.
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CHAPTER 4

Notation standards, References

In the documentation, you will find the following notation:

• 𝑅 : the set of all ratings.

• 𝑅𝑡𝑟𝑎𝑖𝑛, 𝑅𝑡𝑒𝑠𝑡 and �̂� denote the training set, the test set, and the set of predicted ratings.

• 𝑈 : the set of all users. 𝑢 and 𝑣 denotes users.

• 𝐼 : the set of all items. 𝑖 and 𝑗 denotes items.

• 𝑈𝑖 : the set of all users that have rated item 𝑖.

• 𝑈𝑖𝑗 : the set of all users that have rated both items 𝑖 and 𝑗.

• 𝐼𝑢 : the set of all items rated by user 𝑢.

• 𝐼𝑢𝑣 : the set of all items rated by both users 𝑢 and 𝑣.

• 𝑟𝑢𝑖 : the true rating of user 𝑢 for item 𝑖.

• 𝑟𝑢𝑖 : the estimated rating of user 𝑢 for item 𝑖.

• 𝑏𝑢𝑖 : the baseline rating of user 𝑢 for item 𝑖.

• 𝜇 : the mean of all ratings.

• 𝜇𝑢 : the mean of all ratings given by user 𝑢.

• 𝜇𝑖 : the mean of all ratings given to item 𝑖.

• 𝜎𝑢 : the standard deviation of all ratings given by user 𝑢.

• 𝜎𝑖 : the standard deviation of all ratings given to item 𝑖.
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• 𝑁𝑘
𝑖 (𝑢) : the 𝑘 nearest neighbors of user 𝑢 that have rated item 𝑖. This set is computed using

a similarity metric.

• 𝑁𝑘
𝑢 (𝑖) : the 𝑘 nearest neighbors of item 𝑖 that are rated by user 𝑢. This set is computed using

a similarity metric.

References

Here are the papers used as references in the documentation. Links to pdf files where added when
possible. A simple Google search should lead you easily to the missing ones :)
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CHAPTER 5

FAQ

You will find here the Frequently Asked Questions, as well as some other use-case examples that
are not part of the User Guide.

5.1 How to get the top-N recommendations for each user

Here is an example where we retrieve retrieve the top-10 items with highest rating prediction for
each user in the MovieLens-100k dataset. We first train an SVD algorithm on the whole dataset,
and then predict all the ratings for the pairs (user, item) that are not in the training set. We then
retrieve the top-10 prediction for each user.

Listing 5.1: From file examples/top_n_recommendations.py

from collections import defaultdict

from surprise import SVD
from surprise import Dataset

def get_top_n(predictions, n=10):
'''Return the top-N recommendation for each user from a set of

→˓predictions.

Args:
predictions(list of Prediction objects): The list of

→˓predictions, as
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returned by the test method of an algorithm.
n(int): The number of recommendation to output for each user.

→˓Default
is 10.

Returns:
A dict where keys are user (raw) ids and values are lists of

→˓tuples:
[(raw item id, rating estimation), ...] of size n.

'''

# First map the predictions to each user.
top_n = defaultdict(list)
for uid, iid, true_r, est, _ in predictions:

top_n[uid].append((iid, est))

# Then sort the predictions for each user and retrieve the k
→˓highest ones.

for uid, user_ratings in top_n.items():
user_ratings.sort(key=lambda x: x[1], reverse=True)
top_n[uid] = user_ratings[:n]

return top_n

# First train an SVD algorithm on the movielens dataset.
data = Dataset.load_builtin('ml-100k')
trainset = data.build_full_trainset()
algo = SVD()
algo.fit(trainset)

# Than predict ratings for all pairs (u, i) that are NOT in the
→˓training set.
testset = trainset.build_anti_testset()
predictions = algo.test(testset)

top_n = get_top_n(predictions, n=10)

# Print the recommended items for each user
for uid, user_ratings in top_n.items():

print(uid, [iid for (iid, _) in user_ratings])
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5.2 How to compute precision@k and recall@k

Here is an example where we compute Precision@k and Recall@k for each user:

Precision@k = |{Recommended items that are relevant}|
|{Recommended items}| Recall@k = |{Recommended items that are relevant}|

|{Relevant items}|

An item is considered relevant if its true rating 𝑟𝑢𝑖 is greater than a given threshold. An item is
considered recommended if its estimated rating 𝑟𝑢𝑖 is greater than the threshold, and if it is among
the k highest estimated ratings.

Listing 5.2: From file examples/precision_recall_at_k.py

from collections import defaultdict

from surprise import Dataset
from surprise import SVD
from surprise.model_selection import KFold

def precision_recall_at_k(predictions, k=10, threshold=3.5):
'''Return precision and recall at k metrics for each user.'''

# First map the predictions to each user.
user_est_true = defaultdict(list)
for uid, _, true_r, est, _ in predictions:

user_est_true[uid].append((est, true_r))

precisions = dict()
recalls = dict()
for uid, user_ratings in user_est_true.items():

# Sort user ratings by estimated value
user_ratings.sort(key=lambda x: x[0], reverse=True)

# Number of relevant items
n_rel = sum((true_r >= threshold) for (_, true_r) in user_

→˓ratings)

# Number of recommended items in top k
n_rec_k = sum((est >= threshold) for (est, _) in user_

→˓ratings[:k])

# Number of relevant and recommended items in top k
n_rel_and_rec_k = sum(((true_r >= threshold) and (est >=

→˓threshold))
for (est, true_r) in user_ratings[:k])

# Precision@K: Proportion of recommended items that are
→˓relevant
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precisions[uid] = n_rel_and_rec_k / n_rec_k if n_rec_k != 0
→˓else 1

# Recall@K: Proportion of relevant items that are recommended
recalls[uid] = n_rel_and_rec_k / n_rel if n_rel != 0 else 1

return precisions, recalls

data = Dataset.load_builtin('ml-100k')
kf = KFold(n_splits=5)
algo = SVD()

for trainset, testset in kf.split(data):
algo.fit(trainset)
predictions = algo.test(testset)
precisions, recalls = precision_recall_at_k(predictions, k=5,

→˓threshold=4)

# Precision and recall can then be averaged over all users
print(sum(prec for prec in precisions.values()) / len(precisions))
print(sum(rec for rec in recalls.values()) / len(recalls))

5.3 How to get the k nearest neighbors of a user (or item)

You can use the get_neighbors() methods of the algorithm object. This is only relevant for
algorithms that use a similarity measure, such as the k-NN algorithms.

Here is an example where we retrieve the 10 nearest neighbors of the movie Toy Story from the
MovieLens-100k dataset. The output is:

The 10 nearest neighbors of Toy Story are:
Beauty and the Beast (1991)
Raiders of the Lost Ark (1981)
That Thing You Do! (1996)
Lion King, The (1994)
Craft, The (1996)
Liar Liar (1997)
Aladdin (1992)
Cool Hand Luke (1967)
Winnie the Pooh and the Blustery Day (1968)
Indiana Jones and the Last Crusade (1989)

There’s a lot of boilerplate because of the conversions between movie names and their raw/inner
ids (see this note), but it all boils down to the use of get_neighbors():
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Listing 5.3: From file examples/k_nearest_neighbors.py

import io # needed because of weird encoding of u.item file

from surprise import KNNBaseline
from surprise import Dataset
from surprise import get_dataset_dir

def read_item_names():
"""Read the u.item file from MovieLens 100-k dataset and return two
mappings to convert raw ids into movie names and movie names into

→˓raw ids.
"""

file_name = get_dataset_dir() + '/ml-100k/ml-100k/u.item'
rid_to_name = {}
name_to_rid = {}
with io.open(file_name, 'r', encoding='ISO-8859-1') as f:

for line in f:
line = line.split('|')
rid_to_name[line[0]] = line[1]
name_to_rid[line[1]] = line[0]

return rid_to_name, name_to_rid

# First, train the algortihm to compute the similarities between items
data = Dataset.load_builtin('ml-100k')
trainset = data.build_full_trainset()
sim_options = {'name': 'pearson_baseline', 'user_based': False}
algo = KNNBaseline(sim_options=sim_options)
algo.fit(trainset)

# Read the mappings raw id <-> movie name
rid_to_name, name_to_rid = read_item_names()

# Retrieve inner id of the movie Toy Story
toy_story_raw_id = name_to_rid['Toy Story (1995)']
toy_story_inner_id = algo.trainset.to_inner_iid(toy_story_raw_id)

# Retrieve inner ids of the nearest neighbors of Toy Story.
toy_story_neighbors = algo.get_neighbors(toy_story_inner_id, k=10)

# Convert inner ids of the neighbors into names.
toy_story_neighbors = (algo.trainset.to_raw_iid(inner_id)

for inner_id in toy_story_neighbors)
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toy_story_neighbors = (rid_to_name[rid]
for rid in toy_story_neighbors)

print()
print('The 10 nearest neighbors of Toy Story are:')
for movie in toy_story_neighbors:

print(movie)

Naturally, the same can be done for users with minor modifications.

5.4 How to serialize an algorithm

Prediction algorithms can be serialized and loaded back using the dump() and load() functions.
Here is a small example where the SVD algorithm is trained on a dataset and serialized. It is then
reloaded and can be used again for making predictions:

Listing 5.4: From file examples/serialize_algorithm.py

import os

from surprise import SVD
from surprise import Dataset
from surprise import dump

data = Dataset.load_builtin('ml-100k')
trainset = data.build_full_trainset()

algo = SVD()
algo.fit(trainset)

# Compute predictions of the 'original' algorithm.
predictions = algo.test(trainset.build_testset())

# Dump algorithm and reload it.
file_name = os.path.expanduser('~/dump_file')
dump.dump(file_name, algo=algo)
_, loaded_algo = dump.load(file_name)

# We now ensure that the algo is still the same by checking the
→˓predictions.
predictions_loaded_algo = loaded_algo.test(trainset.build_testset())
assert predictions == predictions_loaded_algo
print('Predictions are the same')
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Algorithms can be serialized along with their predictions, so that can be further analyzed or com-
pared with other algorithms, using pandas dataframes. Some examples are given in the two fol-
lowing notebooks:

• Dumping and analysis of the KNNBasic algorithm.

• Comparison of two algorithms.

5.5 How to build my own prediction algorithm

There’s a whole guide here.

5.6 What are raw and inner ids

Users and items have a raw id and an inner id. Some methods will use/return a raw id (e.g. the
predict() method), while some other will use/return an inner id.

Raw ids are ids as defined in a rating file or in a pandas dataframe. They can be strings or numbers.
Note though that if the ratings were read from a file which is the standard scenario, they are
represented as strings. This is important to know if you’re using e.g. predict() or other
methods that accept raw ids as parameters.

On trainset creation, each raw id is mapped to a unique integer called inner id, which is a lot more
suitable for idly to manipulate. Conversions between raw and inner ids can be done using the
to_inner_uid(), to_inner_iid(), to_raw_uid(), and to_raw_iid() methods of
the trainset.

5.7 Can I use my own dataset with idly, and can it be a
pandas dataframe

Yes, and yes. See the user guide.

5.8 How to tune an algorithm parameters

You can tune the parameters of an algorithm with the GridSearchCV class as described here.
After the tuning, you may want to have an unbiased estimate of your algorithm performances.
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5.9 How to get accuracy measures on the training set

You can use the build_testset() method of the Trainset object to build a testset that can
be then used with the test() method:

Listing 5.5: From file examples/evaluate_on_trainset.py

from surprise import Dataset
from surprise import SVD
from surprise import accuracy
from surprise.model_selection import KFold

data = Dataset.load_builtin('ml-100k')

algo = SVD()

trainset = data.build_full_trainset()
algo.fit(trainset)

testset = trainset.build_testset()
predictions = algo.test(testset)
# RMSE should be low as we are biased
accuracy.rmse(predictions, verbose=True) # ~ 0.68 (which is low)

Check out the example file for more usage examples.

5.10 How to save some data for unbiased accuracy esti-
mation

If your goal is to tune the parameters of an algorithm, you may want to spare a bit of data to have an
unbiased estimation of its performances. For instance you may want to split your data into two sets
A and B. A is used for parameter tuning using grid search, and B is used for unbiased estimation.
This can be done as follows:

Listing 5.6: From file examples/split_data_for_unbiased_estimation.py

import random

from surprise import SVD
from surprise import Dataset
from surprise import accuracy
from surprise.model_selection import GridSearchCV
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# Load the full dataset.
data = Dataset.load_builtin('ml-100k')
raw_ratings = data.raw_ratings

# shuffle ratings if you want
random.shuffle(raw_ratings)

# A = 90% of the data, B = 10% of the data
threshold = int(.9 * len(raw_ratings))
A_raw_ratings = raw_ratings[:threshold]
B_raw_ratings = raw_ratings[threshold:]

data.raw_ratings = A_raw_ratings # data is now the set A

# Select your best algo with grid search.
print('Grid Search...')
param_grid = {'n_epochs': [5, 10], 'lr_all': [0.002, 0.005]}
grid_search = GridSearchCV(SVD, param_grid, measures=['rmse'], cv=3)
grid_search.fit(data)

algo = grid_search.best_estimator['rmse']

# retrain on the whole set A
trainset = data.build_full_trainset()
algo.fit(trainset)

# Compute biased accuracy on A
predictions = algo.test(trainset.build_testset())
print('Biased accuracy on A,', end=' ')
accuracy.rmse(predictions)

# Compute unbiased accuracy on B
testset = data.construct_testset(B_raw_ratings) # testset is now the
→˓set B
predictions = algo.test(testset)
print('Unbiased accuracy on B,', end=' ')
accuracy.rmse(predictions)

5.11 How to have reproducible experiments

Some algorithms randomly initialize their parameters (sometimes with numpy), and the cross-
validation folds are also randomly generated. If you need to reproduce your experiments multiple
times, you just have to set the seed of the RNG at the beginning of your program:
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import random
import numpy as np

my_seed = 0
random.seed(my_seed)
numpy.random.seed(my_seed)

5.12 Where are datasets stored and how to change it?

By default, datasets downloaded by idly will be saved in the '~/.idly_data' directory. This
is also where dump files will be stored. You can change the default directory by setting the
'IDLY_DATA_FOLDER' environment variable.

36 Chapter 5. FAQ



CHAPTER 6

prediction_algorithms package

You may want to check the notation standards before diving into the formulas.

6.1 The algorithm base class

6.2 The predictions module

6.3 Basic algorithms

These are basic algorithms that do not do much work but that are still useful for comparing accu-
racies.

6.4 k-NN inspired algorithms

These are algorithms that are directly derived from a basic nearest neighbors approach.

Note: For each of these algorithms, the actual number of neighbors that are aggregated to com-
pute an estimation is necessarily less than or equal to 𝑘. First, there might just not exist enough
neighbors and second, the sets 𝑁𝑘

𝑖 (𝑢) and 𝑁𝑘
𝑢 (𝑖) only include neighbors for which the similarity

measure is positive. It would make no sense to aggregate ratings from users (or items) that are
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negatively correlated. For a given prediction, the actual number of neighbors can be retrieved in
the 'actual_k' field of the details dictionary of the prediction.

You may want to read the User Guide on how to configure the sim_options parameter.

6.5 Matrix Factorization-based algorithms

6.6 Slope One

6.7 Co-clustering
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CHAPTER 7

The model_selection package

idly provides various tools to run cross-validation procedures and search the best parameters for
a prediction algorithm. The tools presented here are all heavily inspired from the excellent scikit
learn library.

7.1 Cross validation iterators

7.2 Cross validation

7.3 Parameter search
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similarities module
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accuracy module
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dataset module
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CHAPTER 11

Trainset class
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Reader class
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evaluate module
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CHAPTER 14

dump module
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